Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization
Aims Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets—Ly6Chi and Ly6Clo—to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. H...
Gespeichert in:
Veröffentlicht in: | Cardiovascular research 2010-10, Vol.88 (1), p.186-195 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims Monocyte systemic levels are known to be a major determinant of ischaemic tissue revascularization, but the mechanisms mediating mobilization of different monocyte subsets—Ly6Chi and Ly6Clo—to the blood and their respective role in post-ischaemic neovascularization are not clearly understood. Here, we hypothesized that distinct chemokine/chemokine receptor pathways, namely CCL2/CCR2, CX3CL1/CX3CR1, and CCL5/CCR5, differentially control monocyte subset systemic levels, and might thus impact post-ischaemic vessel growth. Methods and results In a model of murine hindlimb ischaemia, both Ly6Chi and Ly6Clo monocyte circulating levels were increased after femoral artery ligation. CCL2/CCR2 activation enhanced blood Ly6Chi and Ly6Clo monocyte counts, although the opposite effect was seen in mice with CCL2 or CCR2 deficiency. CX3CL1/CX3CR1 strongly impacted Ly6Clo monocyte levels, whereas CCL5/CCR5 had no role. Only CCL2/CCR2 signalling influenced neovascularization, which was increased in mice overexpressing CCL2, whereas it markedly decreased in CCL2−/− mice. Moreover, adoptive transfer of Ly6Chi—but not Ly6Clo—monocytes enhanced vessel growth and blood flow recovery. Conclusion Altogether, our data demonstrate that regulation of proangiogenic Ly6Chi monocytes systemic levels by CCL2/CCR2 controls post-ischaemic vessel growth, whereas Ly6Clo monocytes have no major role in this setting. |
---|---|
ISSN: | 0008-6363 1755-3245 |
DOI: | 10.1093/cvr/cvq153 |