Sub-femtosecond electron transport in a nanoscale gap

The strong fields associated with few-cycle pulses can drive highly nonlinear phenomena, allowing the direct control of electrons in condensed matter systems. In this context, by employing near-infrared single-cycle pulse pairs, we measure interferometric autocorrelations of the ultrafast currents i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-03, Vol.16 (3), p.341-345
Hauptverfasser: Ludwig, Markus, Aguirregabiria, Garikoitz, Ritzkowsky, Felix, Rybka, Tobias, Marinica, Dana Codruta, Aizpurua, Javier, Borisov, Andrei G., Leitenstorfer, Alfred, Brida, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The strong fields associated with few-cycle pulses can drive highly nonlinear phenomena, allowing the direct control of electrons in condensed matter systems. In this context, by employing near-infrared single-cycle pulse pairs, we measure interferometric autocorrelations of the ultrafast currents induced by optical field emission at the nanogap of a single plasmonic nanocircuit. The dynamics of this ultrafast electron nanotransport depends on the precise temporal field profile of the optical driving pulse. Current autocorrelations are acquired with sub-femtosecond temporal resolution as a function of both pulse delay and absolute carrier-envelope phase. Quantitative modelling of the experiments enables us to monitor the spatiotemporal evolution of the electron density and currents induced in the system and to elucidate the physics underlying the electron transfer driven by strong optical fields in plasmonic gaps. Specifically, we clarify the interplay between the carrier-envelope phase of the driving pulse, plasmonic resonance and quiver motion. Single-cycle interferometric autocorrelation measurements of electrons tunnelling across the gap of a plasmonic bowtie antenna and quantitative models provide insight into the physical interactions that drive the electron transfer.
ISSN:1745-2473
1745-2481
1476-4636
DOI:10.1038/s41567-019-0745-8