Localized Mechanical Stress Promotes Microtubule Rescue
Microtubule dynamics rely on the properties of tubulin and are regulated by microtubule-associated proteins. GTP-tubulin assembles into hollow polymers, which can depolymerize upon GTP hydrolysis. Depolymerizing microtubules may stop shrinking and resume growth. Such rescues are regulated by microtu...
Gespeichert in:
Veröffentlicht in: | Current biology 2016-12, Vol.26 (24), p.3399-3406 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microtubule dynamics rely on the properties of tubulin and are regulated by microtubule-associated proteins. GTP-tubulin assembles into hollow polymers, which can depolymerize upon GTP hydrolysis. Depolymerizing microtubules may stop shrinking and resume growth. Such rescues are regulated by microtubule-associated proteins like CLIP-170 and the CLASPs [1, 2]. Microtubule domains prone to rescues contain discrete regions (previously termed “GTP islands”) that retain a GTP-tubulin-like conformation in the main body of the microtubule [3]. However, the exact nature of these domains and the mechanisms controlling their occurrence and distribution are largely unknown. Here we show that collisions between growing microtubules and mechanical obstacles (including other microtubules) in vitro result in the higher abundance of GTP-like islands in stressed microtubule regions. Furthermore, these islands were found to be efficiently generated by both lateral contacts and mechanical constraints applied to the main body of the microtubules. They were also particularly prominent where shifts in the number of protofilaments occur in the microtubule lattice. GTP-like islands and rescues frequently co-occurred at microtubule intersections in vitro and in living cells, both in crossing and in crossed microtubules. We also observed that CLIP-170 recognizes GTP-like islands in vivo and is retained at microtubule crossings. Therefore, we propose that rescues occur via a two-stage mechanism: (1) lattice defects determine potential rescue-promoting islands in the microtubule structure, and (2) CLIP-170 detects these islands to stimulate microtubule rescue. Our results reveal the interplay between rescue-promoting factors and microtubule architecture and organization to control microtubule dynamics.
[Display omitted]
•Microtubule-microtubule interactions or local constraints generate GTP-like islands•GTP-like islands consist of microtubule lattice repair and/or defects•GTP-like islands function as rescue-promoting islands at microtubule crossings•Microtubule crossings and GTP-like islands retain the rescue factor CLIP-170
Shrinking microtubules may undergo rescues to stop depolymerizing. Rescues and their locations are determined by the presence of small regions called GTP islands. de Forges et al. show that mechanical constraints at microtubule crossings, lattice defects, and repair generate GTP-like islands, which recruit CLIP-170 and stimulate rescues. |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2016.10.048 |