Polarizabilities of complex individual dielectric or plasmonic nanostructures
When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors. Here, we propose a universal method to extract the different components of the response tensors associated with small...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-06, Vol.101 (23), p.1, Article 235418 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 101 |
creator | Patoux, Adelin Majorel, Clément Wiecha, Peter R. Cuche, Aurélien Muskens, Otto L. Girard, Christian Arbouet, Arnaud |
description | When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors. Here, we propose a universal method to extract the different components of the response tensors associated with small plasmonic or dielectric particles. We demonstrate that the optical response can be faithfully approximated, as long as the effective dipole is not induced by retardation effects, hence do not depend on the phase of the illumination. We show that the conventional approximation breaks down for a phase-driven dipolar response, such as optical magnetic resonances in dielectric nanostructures. To describe such retardation induced dipole resonances in intermediate-size dielectric nanostructures, we introduce "pseudopolarizabilities" including first-order phase effects, which we demonstrate at the example of magnetic dipole resonances in dielectric spheres and ellipsoids. Our method paves the way for fast simulations of large and inhomogeneous metasurfaces. |
doi_str_mv | 10.1103/PhysRevB.101.235418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02991773v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431252806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4a873d81fe6bf63a717cf3db5e759b0f85e9189572d6f6ba8c30fb9ba852d71b3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOOZ-gTcFr7zozEeTNJdzqBMmDtHrkKYJy8iamrTD-evtqHr1nvfwcDgcAK4RnCMEyd1me0xv5nA_RxDNMaEFKs_ABBdM5EIwcf6vKbwEs5R2EELEoOBQTMDLJngV3beqnHedMykLNtNh33rzlbmmdgdX98pntTPe6C46nYWYtV6lfWiGp1FNSF3sdddHk67AhVU-mdnvnYKPx4f35Spfvz49LxfrXBPKurxQJSd1iaxhlWVEccS1JXVFDaeigrakRqBSUI5rZlmlSk2grcQgKK45qsgU3I65W-VlG91exaMMysnVYi1PHsRCIM7JAQ3szci2MXz2JnVyF_rYDPUkLgjCFJeQDRQZKR1DStHY_1gE5Wlm-TfzYCA5zkx-AMtTcso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431252806</pqid></control><display><type>article</type><title>Polarizabilities of complex individual dielectric or plasmonic nanostructures</title><source>American Physical Society Journals</source><creator>Patoux, Adelin ; Majorel, Clément ; Wiecha, Peter R. ; Cuche, Aurélien ; Muskens, Otto L. ; Girard, Christian ; Arbouet, Arnaud</creator><creatorcontrib>Patoux, Adelin ; Majorel, Clément ; Wiecha, Peter R. ; Cuche, Aurélien ; Muskens, Otto L. ; Girard, Christian ; Arbouet, Arnaud</creatorcontrib><description>When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors. Here, we propose a universal method to extract the different components of the response tensors associated with small plasmonic or dielectric particles. We demonstrate that the optical response can be faithfully approximated, as long as the effective dipole is not induced by retardation effects, hence do not depend on the phase of the illumination. We show that the conventional approximation breaks down for a phase-driven dipolar response, such as optical magnetic resonances in dielectric nanostructures. To describe such retardation induced dipole resonances in intermediate-size dielectric nanostructures, we introduce "pseudopolarizabilities" including first-order phase effects, which we demonstrate at the example of magnetic dipole resonances in dielectric spheres and ellipsoids. Our method paves the way for fast simulations of large and inhomogeneous metasurfaces.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.235418</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Dielectrics ; Ellipsoids ; General Physics ; Magnetic dipoles ; Magnetic resonance ; Mathematical analysis ; Nanoparticles ; Nanostructure ; Optics ; Physics ; Plasmonics ; Tensors</subject><ispartof>Physical review. B, 2020-06, Vol.101 (23), p.1, Article 235418</ispartof><rights>Copyright American Physical Society Jun 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4a873d81fe6bf63a717cf3db5e759b0f85e9189572d6f6ba8c30fb9ba852d71b3</citedby><cites>FETCH-LOGICAL-c356t-4a873d81fe6bf63a717cf3db5e759b0f85e9189572d6f6ba8c30fb9ba852d71b3</cites><orcidid>0000-0002-4571-0116 ; 0000-0003-0693-5504 ; 0000-0002-3222-6202 ; 0000-0002-6825-7668 ; 0000-0002-1851-9578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02991773$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Patoux, Adelin</creatorcontrib><creatorcontrib>Majorel, Clément</creatorcontrib><creatorcontrib>Wiecha, Peter R.</creatorcontrib><creatorcontrib>Cuche, Aurélien</creatorcontrib><creatorcontrib>Muskens, Otto L.</creatorcontrib><creatorcontrib>Girard, Christian</creatorcontrib><creatorcontrib>Arbouet, Arnaud</creatorcontrib><title>Polarizabilities of complex individual dielectric or plasmonic nanostructures</title><title>Physical review. B</title><description>When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors. Here, we propose a universal method to extract the different components of the response tensors associated with small plasmonic or dielectric particles. We demonstrate that the optical response can be faithfully approximated, as long as the effective dipole is not induced by retardation effects, hence do not depend on the phase of the illumination. We show that the conventional approximation breaks down for a phase-driven dipolar response, such as optical magnetic resonances in dielectric nanostructures. To describe such retardation induced dipole resonances in intermediate-size dielectric nanostructures, we introduce "pseudopolarizabilities" including first-order phase effects, which we demonstrate at the example of magnetic dipole resonances in dielectric spheres and ellipsoids. Our method paves the way for fast simulations of large and inhomogeneous metasurfaces.</description><subject>Dielectrics</subject><subject>Ellipsoids</subject><subject>General Physics</subject><subject>Magnetic dipoles</subject><subject>Magnetic resonance</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Optics</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Tensors</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOOZ-gTcFr7zozEeTNJdzqBMmDtHrkKYJy8iamrTD-evtqHr1nvfwcDgcAK4RnCMEyd1me0xv5nA_RxDNMaEFKs_ABBdM5EIwcf6vKbwEs5R2EELEoOBQTMDLJngV3beqnHedMykLNtNh33rzlbmmdgdX98pntTPe6C46nYWYtV6lfWiGp1FNSF3sdddHk67AhVU-mdnvnYKPx4f35Spfvz49LxfrXBPKurxQJSd1iaxhlWVEccS1JXVFDaeigrakRqBSUI5rZlmlSk2grcQgKK45qsgU3I65W-VlG91exaMMysnVYi1PHsRCIM7JAQ3szci2MXz2JnVyF_rYDPUkLgjCFJeQDRQZKR1DStHY_1gE5Wlm-TfzYCA5zkx-AMtTcso</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Patoux, Adelin</creator><creator>Majorel, Clément</creator><creator>Wiecha, Peter R.</creator><creator>Cuche, Aurélien</creator><creator>Muskens, Otto L.</creator><creator>Girard, Christian</creator><creator>Arbouet, Arnaud</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4571-0116</orcidid><orcidid>https://orcid.org/0000-0003-0693-5504</orcidid><orcidid>https://orcid.org/0000-0002-3222-6202</orcidid><orcidid>https://orcid.org/0000-0002-6825-7668</orcidid><orcidid>https://orcid.org/0000-0002-1851-9578</orcidid></search><sort><creationdate>20200615</creationdate><title>Polarizabilities of complex individual dielectric or plasmonic nanostructures</title><author>Patoux, Adelin ; Majorel, Clément ; Wiecha, Peter R. ; Cuche, Aurélien ; Muskens, Otto L. ; Girard, Christian ; Arbouet, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4a873d81fe6bf63a717cf3db5e759b0f85e9189572d6f6ba8c30fb9ba852d71b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dielectrics</topic><topic>Ellipsoids</topic><topic>General Physics</topic><topic>Magnetic dipoles</topic><topic>Magnetic resonance</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Optics</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patoux, Adelin</creatorcontrib><creatorcontrib>Majorel, Clément</creatorcontrib><creatorcontrib>Wiecha, Peter R.</creatorcontrib><creatorcontrib>Cuche, Aurélien</creatorcontrib><creatorcontrib>Muskens, Otto L.</creatorcontrib><creatorcontrib>Girard, Christian</creatorcontrib><creatorcontrib>Arbouet, Arnaud</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patoux, Adelin</au><au>Majorel, Clément</au><au>Wiecha, Peter R.</au><au>Cuche, Aurélien</au><au>Muskens, Otto L.</au><au>Girard, Christian</au><au>Arbouet, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarizabilities of complex individual dielectric or plasmonic nanostructures</atitle><jtitle>Physical review. B</jtitle><date>2020-06-15</date><risdate>2020</risdate><volume>101</volume><issue>23</issue><spage>1</spage><pages>1-</pages><artnum>235418</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors. Here, we propose a universal method to extract the different components of the response tensors associated with small plasmonic or dielectric particles. We demonstrate that the optical response can be faithfully approximated, as long as the effective dipole is not induced by retardation effects, hence do not depend on the phase of the illumination. We show that the conventional approximation breaks down for a phase-driven dipolar response, such as optical magnetic resonances in dielectric nanostructures. To describe such retardation induced dipole resonances in intermediate-size dielectric nanostructures, we introduce "pseudopolarizabilities" including first-order phase effects, which we demonstrate at the example of magnetic dipole resonances in dielectric spheres and ellipsoids. Our method paves the way for fast simulations of large and inhomogeneous metasurfaces.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.235418</doi><orcidid>https://orcid.org/0000-0002-4571-0116</orcidid><orcidid>https://orcid.org/0000-0003-0693-5504</orcidid><orcidid>https://orcid.org/0000-0002-3222-6202</orcidid><orcidid>https://orcid.org/0000-0002-6825-7668</orcidid><orcidid>https://orcid.org/0000-0002-1851-9578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-06, Vol.101 (23), p.1, Article 235418 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02991773v1 |
source | American Physical Society Journals |
subjects | Dielectrics Ellipsoids General Physics Magnetic dipoles Magnetic resonance Mathematical analysis Nanoparticles Nanostructure Optics Physics Plasmonics Tensors |
title | Polarizabilities of complex individual dielectric or plasmonic nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarizabilities%20of%20complex%20individual%20dielectric%20or%20plasmonic%20nanostructures&rft.jtitle=Physical%20review.%20B&rft.au=Patoux,%20Adelin&rft.date=2020-06-15&rft.volume=101&rft.issue=23&rft.spage=1&rft.pages=1-&rft.artnum=235418&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.235418&rft_dat=%3Cproquest_hal_p%3E2431252806%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431252806&rft_id=info:pmid/&rfr_iscdi=true |