Polarizabilities of complex individual dielectric or plasmonic nanostructures

When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors. Here, we propose a universal method to extract the different components of the response tensors associated with small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-06, Vol.101 (23), p.1, Article 235418
Hauptverfasser: Patoux, Adelin, Majorel, Clément, Wiecha, Peter R., Cuche, Aurélien, Muskens, Otto L., Girard, Christian, Arbouet, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical response can be efficiently described with a series of polarizability tensors. Here, we propose a universal method to extract the different components of the response tensors associated with small plasmonic or dielectric particles. We demonstrate that the optical response can be faithfully approximated, as long as the effective dipole is not induced by retardation effects, hence do not depend on the phase of the illumination. We show that the conventional approximation breaks down for a phase-driven dipolar response, such as optical magnetic resonances in dielectric nanostructures. To describe such retardation induced dipole resonances in intermediate-size dielectric nanostructures, we introduce "pseudopolarizabilities" including first-order phase effects, which we demonstrate at the example of magnetic dipole resonances in dielectric spheres and ellipsoids. Our method paves the way for fast simulations of large and inhomogeneous metasurfaces.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.101.235418