Asymmetric Simple Exclusion Process with Open Boundaries and Koornwinder Polynomials

In this paper, we analyze the steady state of the asymmetric simple exclusion process with open boundaries and second class particles by deforming it through the introduction of spectral parameters. The (unnormalized) probabilities of the particle configurations get promoted to Laurent polynomials i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2017-04, Vol.18 (4), p.1121-1151
1. Verfasser: Cantini, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we analyze the steady state of the asymmetric simple exclusion process with open boundaries and second class particles by deforming it through the introduction of spectral parameters. The (unnormalized) probabilities of the particle configurations get promoted to Laurent polynomials in the spectral parameters and are constructed in terms of non-symmetric Koornwinder polynomials. In particular, we show that the partition function coincides with a symmetric Macdonald–Koornwinder polynomial. As an outcome, we compute the steady current and the average density of first class particles.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-016-0540-3