A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting

Herein, we communicate about an Earth-abundant semiconductor photocathode (p-Si/TiO 2 /NiO x ) as an alternative for the rare and expensive Pt as a counter electrode for overall photoelectrochemical water splitting. The proposed photoelectrochemical (PEC) water-splitting device mimics the "Z&qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2019, Vol.48 (4), p.1166-117
Hauptverfasser: Kawde, Anurag, Annamalai, Alagappan, Sellstedt, Anita, Glatzel, Pieter, Wågberg, Thomas, Messinger, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we communicate about an Earth-abundant semiconductor photocathode (p-Si/TiO 2 /NiO x ) as an alternative for the rare and expensive Pt as a counter electrode for overall photoelectrochemical water splitting. The proposed photoelectrochemical (PEC) water-splitting device mimics the "Z"-scheme observed in natural photosynthesis by combining two photoelectrodes in a parallel-illumination mode. A nearly 60% increase in the photocurrent density ( J ph ) for pristine α-Fe 2 O 3 and a 77% increase in the applied bias photocurrent efficiency (ABPE) were achieved by replacing the conventionally used Pt cathode with an efficient, cost effective p-Si/TiO 2 /NiO x photocathode under parallel illumination. The resulting photocurrent density of 1.26 mA cm −2 at 1.23 V RHE represents a new record performance for hydrothermally grown pristine α-Fe 2 O 3 nanorod photoanodes in combination with a photocathode, which opens the prospect for further improvement by doping α-Fe 2 O 3 or by its decoration with co-catalysts. Electrochemical impedance spectroscopy measurements suggest that this significant performance increase is due to the enhancement of the space-charge field in α-Fe 2 O 3 . Herein we demonstrate that an earth-abundant semiconductor photocathode (p-Si/TiO 2 /NiO x ) out-competes rare and expensive Pt as counter electrode to Fe-oxide for overall photoelectrochemical water splitting.
ISSN:1477-9226
1477-9234
1477-9234
DOI:10.1039/c8dt03653e