The Opposing Effects of Reforestation and Afforestation on the Diurnal Temperature Cycle at the Surface and in the Lowest Atmospheric Model Level in the European Summer

The biophysical effects of reforestation and afforestation (herein jointly called re/afforestation) on the diurnal temperature cycle in European summer are investigated by analyzing a regional climate model (RCM) ensemble, established within the Land Use and Climate Across Scales Flagship Pilot Stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2020-11, Vol.33 (21), p.9159-9179
Hauptverfasser: Breil, M., Rechid, D., Davin, E. L., de Noblet-Ducoudré, N., Katragkou, E., Cardoso, R. M., Hoffmann, P., Jach, L. L., Soares, P. M. M., Sofiadis, G., Strada, S., Strandberg, G., Tölle, M. H., Warrach-Sagi, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biophysical effects of reforestation and afforestation (herein jointly called re/afforestation) on the diurnal temperature cycle in European summer are investigated by analyzing a regional climate model (RCM) ensemble, established within the Land Use and Climate Across Scales Flagship Pilot Study (LUCAS FPS). With this RCM ensemble, two idealized experiments are performed for Europe, one with a continent with maximized forest cover, and one in which all forests are turned into grassland. First, an in-depth analysis of one ensemble member (“CCLM-VEG3D”) is carried out, to reveal the complex process chain caused by such land use changes (LUCs). From these findings, the whole ensemble is analyzed and principal biophysical effects of re/afforestation are derived. Results show that the diurnal temperature range is reduced at the surface (top of the vegetation) with re/afforestation. Most RCMs simulate colder surface temperatures T surf during the day and warmer T surf during the night. Thus, for the first time, the principal temperature interrelations found in observation-based studies in the midlatitudes could be reproduced within a model intercomparison study. On the contrary, the diurnal temperature range in the lowest atmospheric model level (T air) is increased with re/afforestation. This opposing temperature response is mainly caused by the higher surface roughness of forest, enhancing the turbulent heat exchange. Furthermore, these opposing temperature responses demonstrate that the use of the diagnostic 2-m temperature (weighted interpolation between T surf and T air) has a limited potential to assess the effects of re/afforestation. Thus, studies about the biophysical impacts of LUCs should investigate the whole near-surface temperature profile.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-19-0624.1