Algebraic hyperbolic spline quasi-interpolants and applications

In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2019-02, Vol.347, p.196-209
Hauptverfasser: Eddargani, S., Lamnii, A., Lamnii, M., Sbibih, D., Zidna, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue
container_start_page 196
container_title Journal of computational and applied mathematics
container_volume 347
creator Eddargani, S.
Lamnii, A.
Lamnii, M.
Sbibih, D.
Zidna, A.
description In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadrature rules, based on integrating some of these quasi-interpolant schemes, are constructed and studied. Numerical results that illustrate the effectiveness of these rules are presented.
doi_str_mv 10.1016/j.cam.2018.08.018
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02973991v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042718304953</els_id><sourcerecordid>S0377042718304953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d0fef6e0a1a7495b842f7e3d152251e0a42a0e6b7c8c59cb53517edf3ebb6af93</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFY_gLdcPSTO5N9m8SClqBUKXvS8TDYTuyVN4m4s9Nu7peJRGJjhzfsNzBPiFiFBwPJ-mxjaJSlglUAorM7EDCupYpSyOhczyKSMIU_lpbjyfgsApcJ8Jh4X3SfXjqyJNoeRXT10YfRjZ3uOvr7J29j2E7tx6KiffER9E9EY1oYmO_T-Wly01Hm--e1z8fH89L5cxeu3l9flYh2bTOZT3EDLbclASDJXRV3laSs5a7BI0wKDnqcEXNbSVKZQpi6yAiU3bcZ1XVKrsrm4O93dUKdHZ3fkDnogq1eLtT5qkCqZKYV7DF48eY0bvHfc_gEI-piW3uqQlj6mpSEUVoF5ODEcnthbdtoby73hxjo2k24G-w_9A08Icv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic hyperbolic spline quasi-interpolants and applications</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Eddargani, S. ; Lamnii, A. ; Lamnii, M. ; Sbibih, D. ; Zidna, A.</creator><creatorcontrib>Eddargani, S. ; Lamnii, A. ; Lamnii, M. ; Sbibih, D. ; Zidna, A.</creatorcontrib><description>In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadrature rules, based on integrating some of these quasi-interpolant schemes, are constructed and studied. Numerical results that illustrate the effectiveness of these rules are presented.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2018.08.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algebraic hyperbolic spline ; Computer Science ; Marsden’s identity ; Quadrature rule ; Quasi-interpolant</subject><ispartof>Journal of computational and applied mathematics, 2019-02, Vol.347, p.196-209</ispartof><rights>2018 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d0fef6e0a1a7495b842f7e3d152251e0a42a0e6b7c8c59cb53517edf3ebb6af93</citedby><cites>FETCH-LOGICAL-c374t-d0fef6e0a1a7495b842f7e3d152251e0a42a0e6b7c8c59cb53517edf3ebb6af93</cites><orcidid>0000-0002-0528-5012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042718304953$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02973991$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eddargani, S.</creatorcontrib><creatorcontrib>Lamnii, A.</creatorcontrib><creatorcontrib>Lamnii, M.</creatorcontrib><creatorcontrib>Sbibih, D.</creatorcontrib><creatorcontrib>Zidna, A.</creatorcontrib><title>Algebraic hyperbolic spline quasi-interpolants and applications</title><title>Journal of computational and applied mathematics</title><description>In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadrature rules, based on integrating some of these quasi-interpolant schemes, are constructed and studied. Numerical results that illustrate the effectiveness of these rules are presented.</description><subject>Algebraic hyperbolic spline</subject><subject>Computer Science</subject><subject>Marsden’s identity</subject><subject>Quadrature rule</subject><subject>Quasi-interpolant</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFY_gLdcPSTO5N9m8SClqBUKXvS8TDYTuyVN4m4s9Nu7peJRGJjhzfsNzBPiFiFBwPJ-mxjaJSlglUAorM7EDCupYpSyOhczyKSMIU_lpbjyfgsApcJ8Jh4X3SfXjqyJNoeRXT10YfRjZ3uOvr7J29j2E7tx6KiffER9E9EY1oYmO_T-Wly01Hm--e1z8fH89L5cxeu3l9flYh2bTOZT3EDLbclASDJXRV3laSs5a7BI0wKDnqcEXNbSVKZQpi6yAiU3bcZ1XVKrsrm4O93dUKdHZ3fkDnogq1eLtT5qkCqZKYV7DF48eY0bvHfc_gEI-piW3uqQlj6mpSEUVoF5ODEcnthbdtoby73hxjo2k24G-w_9A08Icv4</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Eddargani, S.</creator><creator>Lamnii, A.</creator><creator>Lamnii, M.</creator><creator>Sbibih, D.</creator><creator>Zidna, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0528-5012</orcidid></search><sort><creationdate>201902</creationdate><title>Algebraic hyperbolic spline quasi-interpolants and applications</title><author>Eddargani, S. ; Lamnii, A. ; Lamnii, M. ; Sbibih, D. ; Zidna, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d0fef6e0a1a7495b842f7e3d152251e0a42a0e6b7c8c59cb53517edf3ebb6af93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic hyperbolic spline</topic><topic>Computer Science</topic><topic>Marsden’s identity</topic><topic>Quadrature rule</topic><topic>Quasi-interpolant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eddargani, S.</creatorcontrib><creatorcontrib>Lamnii, A.</creatorcontrib><creatorcontrib>Lamnii, M.</creatorcontrib><creatorcontrib>Sbibih, D.</creatorcontrib><creatorcontrib>Zidna, A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eddargani, S.</au><au>Lamnii, A.</au><au>Lamnii, M.</au><au>Sbibih, D.</au><au>Zidna, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic hyperbolic spline quasi-interpolants and applications</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2019-02</date><risdate>2019</risdate><volume>347</volume><spage>196</spage><epage>209</epage><pages>196-209</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadrature rules, based on integrating some of these quasi-interpolant schemes, are constructed and studied. Numerical results that illustrate the effectiveness of these rules are presented.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2018.08.018</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0528-5012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2019-02, Vol.347, p.196-209
issn 0377-0427
1879-1778
language eng
recordid cdi_hal_primary_oai_HAL_hal_02973991v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algebraic hyperbolic spline
Computer Science
Marsden’s identity
Quadrature rule
Quasi-interpolant
title Algebraic hyperbolic spline quasi-interpolants and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20hyperbolic%20spline%20quasi-interpolants%20and%20applications&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Eddargani,%20S.&rft.date=2019-02&rft.volume=347&rft.spage=196&rft.epage=209&rft.pages=196-209&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2018.08.018&rft_dat=%3Celsevier_hal_p%3ES0377042718304953%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0377042718304953&rfr_iscdi=true