Algebraic hyperbolic spline quasi-interpolants and applications

In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2019-02, Vol.347, p.196-209
Hauptverfasser: Eddargani, S., Lamnii, A., Lamnii, M., Sbibih, D., Zidna, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadrature rules, based on integrating some of these quasi-interpolant schemes, are constructed and studied. Numerical results that illustrate the effectiveness of these rules are presented.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2018.08.018