Algebraic hyperbolic spline quasi-interpolants and applications
In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadr...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2019-02, Vol.347, p.196-209 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadrature rules, based on integrating some of these quasi-interpolant schemes, are constructed and studied. Numerical results that illustrate the effectiveness of these rules are presented. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2018.08.018 |