Critical points of the Moser–Trudinger functional on closed surfaces

Given a closed Riemann surface ( Σ , g 0 ) and any positive weight f ∈ C ∞ ( Σ ) , we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional I p , β ( u ) = 2 - p 2 p ‖ u ‖ H 1 2 2 β p 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2022-12, Vol.230 (3), p.1165-1248
Hauptverfasser: De Marchis, Francesca, Malchiodi, Andrea, Martinazzi, Luca, Thizy, Pierre-Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a closed Riemann surface ( Σ , g 0 ) and any positive weight f ∈ C ∞ ( Σ ) , we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional I p , β ( u ) = 2 - p 2 p ‖ u ‖ H 1 2 2 β p 2 - p - ln ∫ Σ e u + p - 1 f d v g 0 , for every p ∈ ( 1 , 2 ) and β > 0 , or for p = 1 and β ∈ ( 0 , ∞ ) \ 4 π N . Letting p ↑ 2 we obtain positive critical points of the Moser-Trudinger functional F ( u ) : = ∫ Σ e u 2 - 1 f d v g 0 constrained to E β : = v s.t. ‖ v ‖ H 1 2 = β for any β > 0 .
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-022-01142-9