Critical points of the Moser–Trudinger functional on closed surfaces
Given a closed Riemann surface ( Σ , g 0 ) and any positive weight f ∈ C ∞ ( Σ ) , we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional I p , β ( u ) = 2 - p 2 p ‖ u ‖ H 1 2 2 β p 2...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2022-12, Vol.230 (3), p.1165-1248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a closed Riemann surface
(
Σ
,
g
0
)
and any positive weight
f
∈
C
∞
(
Σ
)
, we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional
I
p
,
β
(
u
)
=
2
-
p
2
p
‖
u
‖
H
1
2
2
β
p
2
-
p
-
ln
∫
Σ
e
u
+
p
-
1
f
d
v
g
0
,
for every
p
∈
(
1
,
2
)
and
β
>
0
, or for
p
=
1
and
β
∈
(
0
,
∞
)
\
4
π
N
. Letting
p
↑
2
we obtain positive critical points of the Moser-Trudinger functional
F
(
u
)
:
=
∫
Σ
e
u
2
-
1
f
d
v
g
0
constrained to
E
β
:
=
v
s.t.
‖
v
‖
H
1
2
=
β
for any
β
>
0
. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-022-01142-9 |