Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization

•Seven vibrators generate noises at [80–300] Hz and then a complex acoustic field.•S-wave speed is extracted with a 2D FFT to estimate viscoelastic parameters.•10 iterations permit to remove outliers and ensure the repeatability of our method. In order to limit and slow the development of diseases,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2021-02, Vol.110, p.106239-106239, Article 106239
Hauptverfasser: Beuve, S., Kritly, L., Callé, S., Remenieras, J.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106239
container_issue
container_start_page 106239
container_title Ultrasonics
container_volume 110
creator Beuve, S.
Kritly, L.
Callé, S.
Remenieras, J.-P.
description •Seven vibrators generate noises at [80–300] Hz and then a complex acoustic field.•S-wave speed is extracted with a 2D FFT to estimate viscoelastic parameters.•10 iterations permit to remove outliers and ensure the repeatability of our method. In order to limit and slow the development of diseases, they have to be diagnosed early as possible to treat patients in a better and more rapid manner. In this paper, we focus on a noninvasive and quick method based on diffuse fields in elastography to detect diseases that affect the stiffness of organs. To validate our method, a phantom experiment numerically pre-validated is designed. It consists of seven vibrators that generate white noises in a bandwidth of [80–300] Hz and then a complex acoustic field in a phantom. Waves are tracked by a linear ultrasound probe L11-4v linked to a Verasonics Vantage System and are converted into a particle velocity 2D map as a function of time. The phase velocity of the shear waves is calculated using a temporal and 2D spatial Fourier transform and an adapted signal-processing method. Shear wave velocity dispersion measurement in the frequency bandwidth of the vibrators enables one to characterize the dynamic hardness of the material through the viscoelastic parameters μ and η in an acquisition time shorter than a second (Tacq = 300 ms). With the aim of estimating the consistency of the method, the experiment is performed N = 10 times. The measured elastic modulus and viscous parameter that quantify the dynamic properties of the medium correspond to the expected values: μ = 1.23 ± 0.05 kPa and η = 0.51 ± 0.09 Pa∙s.
doi_str_mv 10.1016/j.ultras.2020.106239
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02949572v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X20301785</els_id><sourcerecordid>2444376313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-3cbcf857e45ab70a1a2ac133a3bad6e323a641c96d8c7cef1b1bffb4548fec073</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWqv_QGSWupiaV-exEcQ3VNwouAt3Mjc0ZdrUJFPRX2_KqEtX93I49x7OR8gJoxNGWXGxmPRd9BAmnPKtVHBR75ARq0qZ13VR7ZIRpZLlBZdvB-QwhAWlTFZM7JMDwWvJaVWPyNONNaYPmIU5gs8-YJPWNeroXdBu_ZkZ57PgTMyiDaHHbGOTjh2EaHWm5-BBR_T2C6J1qyOyZ6ALePwzx-T17vbl-iGfPd8_Xl_Nci0lj7nQjTbVtEQ5haakwICDZkKAaKAtUHABhWS6LtpKlxoNa1hjTCOnsjKoaSnG5Hz4O4dOrb1dgv9UDqx6uJqprUZTwXpa8g1L3rPBu_buvccQ1TJVwK6DFbo-KC6lFGUhUv6YyMGqU_vg0fz9ZlRtoauFGqCrLXQ1QE9npz8JfbPE9u_ol3IyXA4GTEw2Fr0K2uJKY2t9Qq1aZ_9P-Ab1MJZP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444376313</pqid></control><display><type>article</type><title>Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Beuve, S. ; Kritly, L. ; Callé, S. ; Remenieras, J.-P.</creator><creatorcontrib>Beuve, S. ; Kritly, L. ; Callé, S. ; Remenieras, J.-P.</creatorcontrib><description>•Seven vibrators generate noises at [80–300] Hz and then a complex acoustic field.•S-wave speed is extracted with a 2D FFT to estimate viscoelastic parameters.•10 iterations permit to remove outliers and ensure the repeatability of our method. In order to limit and slow the development of diseases, they have to be diagnosed early as possible to treat patients in a better and more rapid manner. In this paper, we focus on a noninvasive and quick method based on diffuse fields in elastography to detect diseases that affect the stiffness of organs. To validate our method, a phantom experiment numerically pre-validated is designed. It consists of seven vibrators that generate white noises in a bandwidth of [80–300] Hz and then a complex acoustic field in a phantom. Waves are tracked by a linear ultrasound probe L11-4v linked to a Verasonics Vantage System and are converted into a particle velocity 2D map as a function of time. The phase velocity of the shear waves is calculated using a temporal and 2D spatial Fourier transform and an adapted signal-processing method. Shear wave velocity dispersion measurement in the frequency bandwidth of the vibrators enables one to characterize the dynamic hardness of the material through the viscoelastic parameters μ and η in an acquisition time shorter than a second (Tacq = 300 ms). With the aim of estimating the consistency of the method, the experiment is performed N = 10 times. The measured elastic modulus and viscous parameter that quantify the dynamic properties of the medium correspond to the expected values: μ = 1.23 ± 0.05 kPa and η = 0.51 ± 0.09 Pa∙s.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2020.106239</identifier><identifier>PMID: 32942089</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acoustics ; Algorithms ; Complex acoustic field ; Elastic Modulus ; Elasticity Imaging Techniques - instrumentation ; Elastography ; Engineering Sciences ; Equipment Design ; Fourier Analysis ; Image Enhancement - methods ; Phantoms, Imaging ; Reproducibility of Results ; Rheology ; Signal Processing, Computer-Assisted ; Spectrum Analysis - instrumentation ; Ultrasound imaging ; Vibration ; Viscosity</subject><ispartof>Ultrasonics, 2021-02, Vol.110, p.106239-106239, Article 106239</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-3cbcf857e45ab70a1a2ac133a3bad6e323a641c96d8c7cef1b1bffb4548fec073</citedby><cites>FETCH-LOGICAL-c442t-3cbcf857e45ab70a1a2ac133a3bad6e323a641c96d8c7cef1b1bffb4548fec073</cites><orcidid>0000-0003-3649-9424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0041624X20301785$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32942089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02949572$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beuve, S.</creatorcontrib><creatorcontrib>Kritly, L.</creatorcontrib><creatorcontrib>Callé, S.</creatorcontrib><creatorcontrib>Remenieras, J.-P.</creatorcontrib><title>Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>•Seven vibrators generate noises at [80–300] Hz and then a complex acoustic field.•S-wave speed is extracted with a 2D FFT to estimate viscoelastic parameters.•10 iterations permit to remove outliers and ensure the repeatability of our method. In order to limit and slow the development of diseases, they have to be diagnosed early as possible to treat patients in a better and more rapid manner. In this paper, we focus on a noninvasive and quick method based on diffuse fields in elastography to detect diseases that affect the stiffness of organs. To validate our method, a phantom experiment numerically pre-validated is designed. It consists of seven vibrators that generate white noises in a bandwidth of [80–300] Hz and then a complex acoustic field in a phantom. Waves are tracked by a linear ultrasound probe L11-4v linked to a Verasonics Vantage System and are converted into a particle velocity 2D map as a function of time. The phase velocity of the shear waves is calculated using a temporal and 2D spatial Fourier transform and an adapted signal-processing method. Shear wave velocity dispersion measurement in the frequency bandwidth of the vibrators enables one to characterize the dynamic hardness of the material through the viscoelastic parameters μ and η in an acquisition time shorter than a second (Tacq = 300 ms). With the aim of estimating the consistency of the method, the experiment is performed N = 10 times. The measured elastic modulus and viscous parameter that quantify the dynamic properties of the medium correspond to the expected values: μ = 1.23 ± 0.05 kPa and η = 0.51 ± 0.09 Pa∙s.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Complex acoustic field</subject><subject>Elastic Modulus</subject><subject>Elasticity Imaging Techniques - instrumentation</subject><subject>Elastography</subject><subject>Engineering Sciences</subject><subject>Equipment Design</subject><subject>Fourier Analysis</subject><subject>Image Enhancement - methods</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Rheology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spectrum Analysis - instrumentation</subject><subject>Ultrasound imaging</subject><subject>Vibration</subject><subject>Viscosity</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMoWqv_QGSWupiaV-exEcQ3VNwouAt3Mjc0ZdrUJFPRX2_KqEtX93I49x7OR8gJoxNGWXGxmPRd9BAmnPKtVHBR75ARq0qZ13VR7ZIRpZLlBZdvB-QwhAWlTFZM7JMDwWvJaVWPyNONNaYPmIU5gs8-YJPWNeroXdBu_ZkZ57PgTMyiDaHHbGOTjh2EaHWm5-BBR_T2C6J1qyOyZ6ALePwzx-T17vbl-iGfPd8_Xl_Nci0lj7nQjTbVtEQ5haakwICDZkKAaKAtUHABhWS6LtpKlxoNa1hjTCOnsjKoaSnG5Hz4O4dOrb1dgv9UDqx6uJqprUZTwXpa8g1L3rPBu_buvccQ1TJVwK6DFbo-KC6lFGUhUv6YyMGqU_vg0fz9ZlRtoauFGqCrLXQ1QE9npz8JfbPE9u_ol3IyXA4GTEw2Fr0K2uJKY2t9Qq1aZ_9P-Ab1MJZP</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Beuve, S.</creator><creator>Kritly, L.</creator><creator>Callé, S.</creator><creator>Remenieras, J.-P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3649-9424</orcidid></search><sort><creationdate>202102</creationdate><title>Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization</title><author>Beuve, S. ; Kritly, L. ; Callé, S. ; Remenieras, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-3cbcf857e45ab70a1a2ac133a3bad6e323a641c96d8c7cef1b1bffb4548fec073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Complex acoustic field</topic><topic>Elastic Modulus</topic><topic>Elasticity Imaging Techniques - instrumentation</topic><topic>Elastography</topic><topic>Engineering Sciences</topic><topic>Equipment Design</topic><topic>Fourier Analysis</topic><topic>Image Enhancement - methods</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Rheology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spectrum Analysis - instrumentation</topic><topic>Ultrasound imaging</topic><topic>Vibration</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beuve, S.</creatorcontrib><creatorcontrib>Kritly, L.</creatorcontrib><creatorcontrib>Callé, S.</creatorcontrib><creatorcontrib>Remenieras, J.-P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beuve, S.</au><au>Kritly, L.</au><au>Callé, S.</au><au>Remenieras, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2021-02</date><risdate>2021</risdate><volume>110</volume><spage>106239</spage><epage>106239</epage><pages>106239-106239</pages><artnum>106239</artnum><issn>0041-624X</issn><eissn>1874-9968</eissn><abstract>•Seven vibrators generate noises at [80–300] Hz and then a complex acoustic field.•S-wave speed is extracted with a 2D FFT to estimate viscoelastic parameters.•10 iterations permit to remove outliers and ensure the repeatability of our method. In order to limit and slow the development of diseases, they have to be diagnosed early as possible to treat patients in a better and more rapid manner. In this paper, we focus on a noninvasive and quick method based on diffuse fields in elastography to detect diseases that affect the stiffness of organs. To validate our method, a phantom experiment numerically pre-validated is designed. It consists of seven vibrators that generate white noises in a bandwidth of [80–300] Hz and then a complex acoustic field in a phantom. Waves are tracked by a linear ultrasound probe L11-4v linked to a Verasonics Vantage System and are converted into a particle velocity 2D map as a function of time. The phase velocity of the shear waves is calculated using a temporal and 2D spatial Fourier transform and an adapted signal-processing method. Shear wave velocity dispersion measurement in the frequency bandwidth of the vibrators enables one to characterize the dynamic hardness of the material through the viscoelastic parameters μ and η in an acquisition time shorter than a second (Tacq = 300 ms). With the aim of estimating the consistency of the method, the experiment is performed N = 10 times. The measured elastic modulus and viscous parameter that quantify the dynamic properties of the medium correspond to the expected values: μ = 1.23 ± 0.05 kPa and η = 0.51 ± 0.09 Pa∙s.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32942089</pmid><doi>10.1016/j.ultras.2020.106239</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3649-9424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2021-02, Vol.110, p.106239-106239, Article 106239
issn 0041-624X
1874-9968
language eng
recordid cdi_hal_primary_oai_HAL_hal_02949572v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acoustics
Algorithms
Complex acoustic field
Elastic Modulus
Elasticity Imaging Techniques - instrumentation
Elastography
Engineering Sciences
Equipment Design
Fourier Analysis
Image Enhancement - methods
Phantoms, Imaging
Reproducibility of Results
Rheology
Signal Processing, Computer-Assisted
Spectrum Analysis - instrumentation
Ultrasound imaging
Vibration
Viscosity
title Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffuse%20shear%20wave%20spectroscopy%20for%20soft%20tissue%20viscoelastic%20characterization&rft.jtitle=Ultrasonics&rft.au=Beuve,%20S.&rft.date=2021-02&rft.volume=110&rft.spage=106239&rft.epage=106239&rft.pages=106239-106239&rft.artnum=106239&rft.issn=0041-624X&rft.eissn=1874-9968&rft_id=info:doi/10.1016/j.ultras.2020.106239&rft_dat=%3Cproquest_hal_p%3E2444376313%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444376313&rft_id=info:pmid/32942089&rft_els_id=S0041624X20301785&rfr_iscdi=true