Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization

•Seven vibrators generate noises at [80–300] Hz and then a complex acoustic field.•S-wave speed is extracted with a 2D FFT to estimate viscoelastic parameters.•10 iterations permit to remove outliers and ensure the repeatability of our method. In order to limit and slow the development of diseases,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2021-02, Vol.110, p.106239-106239, Article 106239
Hauptverfasser: Beuve, S., Kritly, L., Callé, S., Remenieras, J.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Seven vibrators generate noises at [80–300] Hz and then a complex acoustic field.•S-wave speed is extracted with a 2D FFT to estimate viscoelastic parameters.•10 iterations permit to remove outliers and ensure the repeatability of our method. In order to limit and slow the development of diseases, they have to be diagnosed early as possible to treat patients in a better and more rapid manner. In this paper, we focus on a noninvasive and quick method based on diffuse fields in elastography to detect diseases that affect the stiffness of organs. To validate our method, a phantom experiment numerically pre-validated is designed. It consists of seven vibrators that generate white noises in a bandwidth of [80–300] Hz and then a complex acoustic field in a phantom. Waves are tracked by a linear ultrasound probe L11-4v linked to a Verasonics Vantage System and are converted into a particle velocity 2D map as a function of time. The phase velocity of the shear waves is calculated using a temporal and 2D spatial Fourier transform and an adapted signal-processing method. Shear wave velocity dispersion measurement in the frequency bandwidth of the vibrators enables one to characterize the dynamic hardness of the material through the viscoelastic parameters μ and η in an acquisition time shorter than a second (Tacq = 300 ms). With the aim of estimating the consistency of the method, the experiment is performed N = 10 times. The measured elastic modulus and viscous parameter that quantify the dynamic properties of the medium correspond to the expected values: μ = 1.23 ± 0.05 kPa and η = 0.51 ± 0.09 Pa∙s.
ISSN:0041-624X
1874-9968
DOI:10.1016/j.ultras.2020.106239