Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning
Nanometer scale observation of the depinning of a narrow domain wall (DW) under a spin current is reported. We studied approximately 12 nm wide 1D Bloch DWs created in thin films exhibiting perpendicular magnetic anisotropy. Magnetotransport measurements reveal thermally assisted current-driven DW m...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2005-09, Vol.95 (11), p.117203.1-117203.4, Article 117203 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanometer scale observation of the depinning of a narrow domain wall (DW) under a spin current is reported. We studied approximately 12 nm wide 1D Bloch DWs created in thin films exhibiting perpendicular magnetic anisotropy. Magnetotransport measurements reveal thermally assisted current-driven DW motion between pinning sites separated by as little as 20 nm. The efficiency of current-driven DW motion assisted by thermal fluctuations is measured to be orders of magnitude higher than has been found for in-plane magnetized films, allowing us to control DW motion on a nanometer scale at low current densities. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.95.117203 |