EXHAUSTIVE FAMILIES OF REPRESENTATIONS AND SPECTRA OF PSEUDODIFFERENTIAL OPERATORS

A family of representations F of a C*-algebra A is exhaustive if every irreducible representation of A is weakly contained in some φ ∈ F. Such an F has the property that “a ∈ A is invertible if and only if φ(a) is invertible for any φ ∈ F”. The regular representations of amenable, second countable,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2017, Vol.78 (2), p.247-279
Hauptverfasser: NISTOR, VICTOR, PRUDHON, NICOLAS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A family of representations F of a C*-algebra A is exhaustive if every irreducible representation of A is weakly contained in some φ ∈ F. Such an F has the property that “a ∈ A is invertible if and only if φ(a) is invertible for any φ ∈ F”. The regular representations of amenable, second countable, locally compact groupoids form an exhaustive family of representations. If A is a separable C*-algebra, a family F of representations of A is exhaustive if and only if it is strictly spectral. We consider also unbounded operators. A typical application is to parametric pseudodifferential operators.
ISSN:0379-4024
1841-7744
DOI:10.7900/jot.2016jul26.2121