Influence of gas atmosphere (Ar or He) on the laser powder bed fusion of a Ni-based alloy
The gaseous atmosphere plays a major role in the quality of the manufactured parts in Laser Powder Bed Fusion (L-PBF) by protecting the metal from high temperature oxidation. If argon and nitrogen are the most commonly used gases, helium has almost never been considered as a possible candidate as a...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2021-02, Vol.288, p.116851-18, Article 116851 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gaseous atmosphere plays a major role in the quality of the manufactured parts in Laser Powder Bed Fusion (L-PBF) by protecting the metal from high temperature oxidation. If argon and nitrogen are the most commonly used gases, helium has almost never been considered as a possible candidate as a chemically inert shielding gas. To provide a better understanding of the influence of the gas atmosphere on the process stability, a comparative study of L-PBF manufacturing under argon and helium atmospheres has been carried out, considering a nickel-based alloy Inconel® 625 and a single bead configuration. To this end, in-situ process measurements were carried out on a dedicated experimental setup. The melt pool behaviour, the expansion of the vapour plume and the amount of spatters were evaluated with high-speed imaging for the two gases considered, together with the final L-PBF bead dimensions. Results were also compared to single fusion beads carried out in an industrial L-PBF machine for a comparable range of volume energy densities. The influence of the shielding atmosphere on L-PBF single beads was as follows: (1) dimensions of beads were shown to be constant whatever the gas; (2) fewer and smaller spatters were produced under helium atmosphere, especially for high volume energy densities. Physical mechanisms were then discussed to understand those specific effects. |
---|---|
ISSN: | 0924-0136 1873-4774 |
DOI: | 10.1016/j.jmatprotec.2020.116851 |