The Automorphism Groups of the Involution G-Graph and Cayley Graph
Let G be a finite group and Φ(G, S) is the G−graph of a group G with respect to a non-empty subset S. The aim of this paper is to study the structure and the automorphism group of a simple form of G−graph for some finite groups like alternating group, dihedral, semi-dihedral, dicyclic, Zm δ Z2n, whe...
Gespeichert in:
Veröffentlicht in: | Southeast Asian bulletin of mathematics 2019-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a finite group and Φ(G, S) is the G−graph of a group G with respect to a non-empty subset S. The aim of this paper is to study the structure and the automorphism group of a simple form of G−graph for some finite groups like alternating group, dihedral, semi-dihedral, dicyclic, Zm δ Z2n, where δ is inverse mapping and V8n = {a, b|a 2n = b 4 = 1, aba = b −1 , ab −1 a = b}. Then we compare it with the automorphism group of the corresponding Cayley graph. Also we study the structure of involution G−graphs when S = Inv is the set of all involutions of G. |
---|---|
ISSN: | 0129-2021 0219-175X |