Solar Redox Cycling of Ceria Structures Based on Fiber Boards, Foams, and Biomimetic Cork-Derived Ecoceramics for Two-Step Thermochemical H2O and CO2 Splitting

Solar thermochemical conversion of H2O and captured CO2 is considered for the production of high-value solar fuels and CO2 valorization, using nonstoichiometric oxygen-exchange redox materials. This work aims to compare the thermochemical cycle performance of different ceria structures, including bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2020-07, Vol.34 (7), p.9037-9049
Hauptverfasser: Haeussler, Anita, Abanades, Stéphane, Costa Oliveira, Fernando A, Barreiros, M. Alexandra, Caetano, A. P. F, Novais, Rui M, Pullar, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9049
container_issue 7
container_start_page 9037
container_title Energy & fuels
container_volume 34
creator Haeussler, Anita
Abanades, Stéphane
Costa Oliveira, Fernando A
Barreiros, M. Alexandra
Caetano, A. P. F
Novais, Rui M
Pullar, Robert C
description Solar thermochemical conversion of H2O and captured CO2 is considered for the production of high-value solar fuels and CO2 valorization, using nonstoichiometric oxygen-exchange redox materials. This work aims to compare the thermochemical cycle performance of different ceria structures, including biomimetic cork-templated ceria (CTCe), ceria foams (CeF), and ceria bulk fiber boards (CeFB), to study the effect of the morphology on fuel production from two-step H2O and CO2 splitting via solar redox cycling. The considered materials underwent thermochemical cycles in a directly irradiated solar reactor under various operating conditions. Typically, a thermal reduction at 1400 °C under Ar at atmospheric pressure, using concentrated solar energy, was carried out followed by an oxidation step with H2O or CO2 between 800 and 1050 °C. The comparison of the fuel production rate and yield from the reactive materials highlighted the importance of the material thermal stability during cycling. CTCe and CeF showed good O2 and fuel production stability over repeated cycles, while CeFB exhibited a decrease of the production because of sintering and thermal gradient due to its low thermal conductivity. Biomimetic CTCe showed a higher fuel production rate compared to the other investigated materials, explained by the favorable microstructure of the cork-based ceramic. The morphology obtained from the cork structure led to the improvement of the redox activity, demonstrating the relevance of studying this material for thermochemical H2O and CO2 splitting cycles. In addition, the impact of the operating conditions was investigated. A decrease of the starting oxidation temperature, an increase of the CO2 molar fraction (lower CO/CO2 ratio), or a high total gas flow rate favoring gas product dilution had a beneficial impact on the CO (or H2) production rate.
doi_str_mv 10.1021/acs.energyfuels.0c01240
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02931743v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f44402162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-3c62507b3b12c8bad045a83f5e283f3821ef35c49bc6deec92c1a4a74f91c1313</originalsourceid><addsrcrecordid>eNpNkcFu2zAMhoWiA5p2fYYKvRWoM0qyE_vYuM0yIECAJTsLtEw3am0rkJx0eZq96pSlh11IgPz44wd_xu4EjAVI8Q1NGFNP_vXY7KkNYzAgZAoXbCQyCUkGsrhkI8jzaQITmV6x6xDeAGCi8mzE_qxdi57_pNr95uXRtLZ_5a7hJXmLfD34vRn2ngKfYaCau57PbUWezxz6OjzyucMuNuxrPrOusx0N1vDS-ffkOUoc4s2LcYY8dtYE3jjPNx8uWQ-045st-c6ZLcUVtnwhV_90ypXk611rhyF6-cq-NNgGuv3sN-zX_GVTLpLl6vuP8mmZoFTFkCgzkRlMK1UJafIKa0gzzFWTkYxV5VJQozKTFpWZ1ESmkEZgitO0KYQRSqgb9nDW3WKrd9526I_aodWLp6U-zeIblZim6nBi78-sN4g77elgw4BBC0gBdKGVkhAhdYZiPvrN7X0f7UdEn0LTp-F_oenP0NRfjoOOeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solar Redox Cycling of Ceria Structures Based on Fiber Boards, Foams, and Biomimetic Cork-Derived Ecoceramics for Two-Step Thermochemical H2O and CO2 Splitting</title><source>ACS Publications</source><creator>Haeussler, Anita ; Abanades, Stéphane ; Costa Oliveira, Fernando A ; Barreiros, M. Alexandra ; Caetano, A. P. F ; Novais, Rui M ; Pullar, Robert C</creator><creatorcontrib>Haeussler, Anita ; Abanades, Stéphane ; Costa Oliveira, Fernando A ; Barreiros, M. Alexandra ; Caetano, A. P. F ; Novais, Rui M ; Pullar, Robert C</creatorcontrib><description>Solar thermochemical conversion of H2O and captured CO2 is considered for the production of high-value solar fuels and CO2 valorization, using nonstoichiometric oxygen-exchange redox materials. This work aims to compare the thermochemical cycle performance of different ceria structures, including biomimetic cork-templated ceria (CTCe), ceria foams (CeF), and ceria bulk fiber boards (CeFB), to study the effect of the morphology on fuel production from two-step H2O and CO2 splitting via solar redox cycling. The considered materials underwent thermochemical cycles in a directly irradiated solar reactor under various operating conditions. Typically, a thermal reduction at 1400 °C under Ar at atmospheric pressure, using concentrated solar energy, was carried out followed by an oxidation step with H2O or CO2 between 800 and 1050 °C. The comparison of the fuel production rate and yield from the reactive materials highlighted the importance of the material thermal stability during cycling. CTCe and CeF showed good O2 and fuel production stability over repeated cycles, while CeFB exhibited a decrease of the production because of sintering and thermal gradient due to its low thermal conductivity. Biomimetic CTCe showed a higher fuel production rate compared to the other investigated materials, explained by the favorable microstructure of the cork-based ceramic. The morphology obtained from the cork structure led to the improvement of the redox activity, demonstrating the relevance of studying this material for thermochemical H2O and CO2 splitting cycles. In addition, the impact of the operating conditions was investigated. A decrease of the starting oxidation temperature, an increase of the CO2 molar fraction (lower CO/CO2 ratio), or a high total gas flow rate favoring gas product dilution had a beneficial impact on the CO (or H2) production rate.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.0c01240</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical and Process Engineering ; Chemical engineering ; Chemical Sciences ; Concentrated solar power ; Cork ; Engineering Sciences ; Inorganic chemistry ; Material chemistry ; Non-Carbon-Based Fuels ; Reactive fluid environment ; Solar fuels ; Thermochemical cycle</subject><ispartof>Energy &amp; fuels, 2020-07, Vol.34 (7), p.9037-9049</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6844-4482 ; 0000-0002-6689-3652 ; 0000-0002-1503-0152 ; 0000-0002-0132-4969 ; 0000-0001-7302-7982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.0c01240$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.0c01240$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02931743$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haeussler, Anita</creatorcontrib><creatorcontrib>Abanades, Stéphane</creatorcontrib><creatorcontrib>Costa Oliveira, Fernando A</creatorcontrib><creatorcontrib>Barreiros, M. Alexandra</creatorcontrib><creatorcontrib>Caetano, A. P. F</creatorcontrib><creatorcontrib>Novais, Rui M</creatorcontrib><creatorcontrib>Pullar, Robert C</creatorcontrib><title>Solar Redox Cycling of Ceria Structures Based on Fiber Boards, Foams, and Biomimetic Cork-Derived Ecoceramics for Two-Step Thermochemical H2O and CO2 Splitting</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Solar thermochemical conversion of H2O and captured CO2 is considered for the production of high-value solar fuels and CO2 valorization, using nonstoichiometric oxygen-exchange redox materials. This work aims to compare the thermochemical cycle performance of different ceria structures, including biomimetic cork-templated ceria (CTCe), ceria foams (CeF), and ceria bulk fiber boards (CeFB), to study the effect of the morphology on fuel production from two-step H2O and CO2 splitting via solar redox cycling. The considered materials underwent thermochemical cycles in a directly irradiated solar reactor under various operating conditions. Typically, a thermal reduction at 1400 °C under Ar at atmospheric pressure, using concentrated solar energy, was carried out followed by an oxidation step with H2O or CO2 between 800 and 1050 °C. The comparison of the fuel production rate and yield from the reactive materials highlighted the importance of the material thermal stability during cycling. CTCe and CeF showed good O2 and fuel production stability over repeated cycles, while CeFB exhibited a decrease of the production because of sintering and thermal gradient due to its low thermal conductivity. Biomimetic CTCe showed a higher fuel production rate compared to the other investigated materials, explained by the favorable microstructure of the cork-based ceramic. The morphology obtained from the cork structure led to the improvement of the redox activity, demonstrating the relevance of studying this material for thermochemical H2O and CO2 splitting cycles. In addition, the impact of the operating conditions was investigated. A decrease of the starting oxidation temperature, an increase of the CO2 molar fraction (lower CO/CO2 ratio), or a high total gas flow rate favoring gas product dilution had a beneficial impact on the CO (or H2) production rate.</description><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Concentrated solar power</subject><subject>Cork</subject><subject>Engineering Sciences</subject><subject>Inorganic chemistry</subject><subject>Material chemistry</subject><subject>Non-Carbon-Based Fuels</subject><subject>Reactive fluid environment</subject><subject>Solar fuels</subject><subject>Thermochemical cycle</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkcFu2zAMhoWiA5p2fYYKvRWoM0qyE_vYuM0yIECAJTsLtEw3am0rkJx0eZq96pSlh11IgPz44wd_xu4EjAVI8Q1NGFNP_vXY7KkNYzAgZAoXbCQyCUkGsrhkI8jzaQITmV6x6xDeAGCi8mzE_qxdi57_pNr95uXRtLZ_5a7hJXmLfD34vRn2ngKfYaCau57PbUWezxz6OjzyucMuNuxrPrOusx0N1vDS-ffkOUoc4s2LcYY8dtYE3jjPNx8uWQ-045st-c6ZLcUVtnwhV_90ypXk611rhyF6-cq-NNgGuv3sN-zX_GVTLpLl6vuP8mmZoFTFkCgzkRlMK1UJafIKa0gzzFWTkYxV5VJQozKTFpWZ1ESmkEZgitO0KYQRSqgb9nDW3WKrd9526I_aodWLp6U-zeIblZim6nBi78-sN4g77elgw4BBC0gBdKGVkhAhdYZiPvrN7X0f7UdEn0LTp-F_oenP0NRfjoOOeA</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Haeussler, Anita</creator><creator>Abanades, Stéphane</creator><creator>Costa Oliveira, Fernando A</creator><creator>Barreiros, M. Alexandra</creator><creator>Caetano, A. P. F</creator><creator>Novais, Rui M</creator><creator>Pullar, Robert C</creator><general>American Chemical Society</general><scope>RCLKO</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6844-4482</orcidid><orcidid>https://orcid.org/0000-0002-6689-3652</orcidid><orcidid>https://orcid.org/0000-0002-1503-0152</orcidid><orcidid>https://orcid.org/0000-0002-0132-4969</orcidid><orcidid>https://orcid.org/0000-0001-7302-7982</orcidid></search><sort><creationdate>20200716</creationdate><title>Solar Redox Cycling of Ceria Structures Based on Fiber Boards, Foams, and Biomimetic Cork-Derived Ecoceramics for Two-Step Thermochemical H2O and CO2 Splitting</title><author>Haeussler, Anita ; Abanades, Stéphane ; Costa Oliveira, Fernando A ; Barreiros, M. Alexandra ; Caetano, A. P. F ; Novais, Rui M ; Pullar, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-3c62507b3b12c8bad045a83f5e283f3821ef35c49bc6deec92c1a4a74f91c1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Concentrated solar power</topic><topic>Cork</topic><topic>Engineering Sciences</topic><topic>Inorganic chemistry</topic><topic>Material chemistry</topic><topic>Non-Carbon-Based Fuels</topic><topic>Reactive fluid environment</topic><topic>Solar fuels</topic><topic>Thermochemical cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haeussler, Anita</creatorcontrib><creatorcontrib>Abanades, Stéphane</creatorcontrib><creatorcontrib>Costa Oliveira, Fernando A</creatorcontrib><creatorcontrib>Barreiros, M. Alexandra</creatorcontrib><creatorcontrib>Caetano, A. P. F</creatorcontrib><creatorcontrib>Novais, Rui M</creatorcontrib><creatorcontrib>Pullar, Robert C</creatorcontrib><collection>RCAAP open access repository</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haeussler, Anita</au><au>Abanades, Stéphane</au><au>Costa Oliveira, Fernando A</au><au>Barreiros, M. Alexandra</au><au>Caetano, A. P. F</au><au>Novais, Rui M</au><au>Pullar, Robert C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Redox Cycling of Ceria Structures Based on Fiber Boards, Foams, and Biomimetic Cork-Derived Ecoceramics for Two-Step Thermochemical H2O and CO2 Splitting</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2020-07-16</date><risdate>2020</risdate><volume>34</volume><issue>7</issue><spage>9037</spage><epage>9049</epage><pages>9037-9049</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Solar thermochemical conversion of H2O and captured CO2 is considered for the production of high-value solar fuels and CO2 valorization, using nonstoichiometric oxygen-exchange redox materials. This work aims to compare the thermochemical cycle performance of different ceria structures, including biomimetic cork-templated ceria (CTCe), ceria foams (CeF), and ceria bulk fiber boards (CeFB), to study the effect of the morphology on fuel production from two-step H2O and CO2 splitting via solar redox cycling. The considered materials underwent thermochemical cycles in a directly irradiated solar reactor under various operating conditions. Typically, a thermal reduction at 1400 °C under Ar at atmospheric pressure, using concentrated solar energy, was carried out followed by an oxidation step with H2O or CO2 between 800 and 1050 °C. The comparison of the fuel production rate and yield from the reactive materials highlighted the importance of the material thermal stability during cycling. CTCe and CeF showed good O2 and fuel production stability over repeated cycles, while CeFB exhibited a decrease of the production because of sintering and thermal gradient due to its low thermal conductivity. Biomimetic CTCe showed a higher fuel production rate compared to the other investigated materials, explained by the favorable microstructure of the cork-based ceramic. The morphology obtained from the cork structure led to the improvement of the redox activity, demonstrating the relevance of studying this material for thermochemical H2O and CO2 splitting cycles. In addition, the impact of the operating conditions was investigated. A decrease of the starting oxidation temperature, an increase of the CO2 molar fraction (lower CO/CO2 ratio), or a high total gas flow rate favoring gas product dilution had a beneficial impact on the CO (or H2) production rate.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.0c01240</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6844-4482</orcidid><orcidid>https://orcid.org/0000-0002-6689-3652</orcidid><orcidid>https://orcid.org/0000-0002-1503-0152</orcidid><orcidid>https://orcid.org/0000-0002-0132-4969</orcidid><orcidid>https://orcid.org/0000-0001-7302-7982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2020-07, Vol.34 (7), p.9037-9049
issn 0887-0624
1520-5029
language eng
recordid cdi_hal_primary_oai_HAL_hal_02931743v1
source ACS Publications
subjects Chemical and Process Engineering
Chemical engineering
Chemical Sciences
Concentrated solar power
Cork
Engineering Sciences
Inorganic chemistry
Material chemistry
Non-Carbon-Based Fuels
Reactive fluid environment
Solar fuels
Thermochemical cycle
title Solar Redox Cycling of Ceria Structures Based on Fiber Boards, Foams, and Biomimetic Cork-Derived Ecoceramics for Two-Step Thermochemical H2O and CO2 Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Redox%20Cycling%20of%20Ceria%20Structures%20Based%20on%20Fiber%20Boards,%20Foams,%20and%20Biomimetic%20Cork-Derived%20Ecoceramics%20for%20Two-Step%20Thermochemical%20H2O%20and%20CO2%20Splitting&rft.jtitle=Energy%20&%20fuels&rft.au=Haeussler,%20Anita&rft.date=2020-07-16&rft.volume=34&rft.issue=7&rft.spage=9037&rft.epage=9049&rft.pages=9037-9049&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.0c01240&rft_dat=%3Cacs_hal_p%3Ef44402162%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true