Solar Redox Cycling of Ceria Structures Based on Fiber Boards, Foams, and Biomimetic Cork-Derived Ecoceramics for Two-Step Thermochemical H2O and CO2 Splitting

Solar thermochemical conversion of H2O and captured CO2 is considered for the production of high-value solar fuels and CO2 valorization, using nonstoichiometric oxygen-exchange redox materials. This work aims to compare the thermochemical cycle performance of different ceria structures, including bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2020-07, Vol.34 (7), p.9037-9049
Hauptverfasser: Haeussler, Anita, Abanades, Stéphane, Costa Oliveira, Fernando A, Barreiros, M. Alexandra, Caetano, A. P. F, Novais, Rui M, Pullar, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar thermochemical conversion of H2O and captured CO2 is considered for the production of high-value solar fuels and CO2 valorization, using nonstoichiometric oxygen-exchange redox materials. This work aims to compare the thermochemical cycle performance of different ceria structures, including biomimetic cork-templated ceria (CTCe), ceria foams (CeF), and ceria bulk fiber boards (CeFB), to study the effect of the morphology on fuel production from two-step H2O and CO2 splitting via solar redox cycling. The considered materials underwent thermochemical cycles in a directly irradiated solar reactor under various operating conditions. Typically, a thermal reduction at 1400 °C under Ar at atmospheric pressure, using concentrated solar energy, was carried out followed by an oxidation step with H2O or CO2 between 800 and 1050 °C. The comparison of the fuel production rate and yield from the reactive materials highlighted the importance of the material thermal stability during cycling. CTCe and CeF showed good O2 and fuel production stability over repeated cycles, while CeFB exhibited a decrease of the production because of sintering and thermal gradient due to its low thermal conductivity. Biomimetic CTCe showed a higher fuel production rate compared to the other investigated materials, explained by the favorable microstructure of the cork-based ceramic. The morphology obtained from the cork structure led to the improvement of the redox activity, demonstrating the relevance of studying this material for thermochemical H2O and CO2 splitting cycles. In addition, the impact of the operating conditions was investigated. A decrease of the starting oxidation temperature, an increase of the CO2 molar fraction (lower CO/CO2 ratio), or a high total gas flow rate favoring gas product dilution had a beneficial impact on the CO (or H2) production rate.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.0c01240