Gas-Phase Hydration of Perillaldehyde Investigated by Microwave Spectroscopy Assisted by Computational Chemistry
The microsolvated complexes of two equatorial conformers of perillaldehyde were experimentally investigated in a supersonic molecular jet coupled to a cavity-based Fourier transform microwave spectrometer, in the 2.3–8 GHz frequency range. The structures of hydrates C10H14O·(H2O) n (n = 1,2,3) were...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-08, Vol.124 (32), p.6511-6520 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microsolvated complexes of two equatorial conformers of perillaldehyde were experimentally investigated in a supersonic molecular jet coupled to a cavity-based Fourier transform microwave spectrometer, in the 2.3–8 GHz frequency range. The structures of hydrates C10H14O·(H2O) n (n = 1,2,3) were first optimized at the MP2/6-311++G(d,p) and B3LYP-D3BJ/def2-TZVP levels of theory. The spectral signatures of four monohydrates and of two dihydrates could then be obtained. Additional rotational constants from the analysis of the spectra of their 18O isotopologues allowed the calculation of the substitution coordinates of the water oxygen atoms of each hydrate. They were found to be in good agreement with those of the optimized structures. SAPT2 calculations and noncovalent interaction analysis highlight the role of dispersion and quasi-hydrogen bonds in the stabilization of the structures. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.0c04097 |