Moth Outbreaks Reduce Decomposition in Subarctic Forest Soils
Tree mortality from insect infestations can significantly reduce carbon storage in forest soils. In subarctic birch forests (Betula pubescens), ecosystem C cycling is largely affected by recurrent outbreaks of defoliating geometrid moths (Epirrita autumnata, Operophtera brumata). Here, we show that...
Gespeichert in:
Veröffentlicht in: | Ecosystems (New York) 2020-01, Vol.23 (1), p.151-163 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tree mortality from insect infestations can significantly reduce carbon storage in forest soils. In subarctic birch forests (Betula pubescens), ecosystem C cycling is largely affected by recurrent outbreaks of defoliating geometrid moths (Epirrita autumnata, Operophtera brumata). Here, we show that soil C stocks in birch forests across Fennoscandia did not change up to 8 years after moth outbreaks. We found that a decrease in woody fine roots was accompanied by a lower soil CO₂ efflux rate and a higher soil N availability following moth outbreaks. We suggest that a high N availability and less ectomycorrhiza likely contributed to lowered heterotrophic respiration and soil enzymatic activity. Based on proxies for decomposition (heterotrophic respiration, phenol oxidase potential activity), we conclude that a decrease in decomposition is a prime cause why soil C stocks of mountain birch forest ecosystems have not changed after moth outbreaks. Compared to disturbed temperate and boreal forests, a CO₂-related positive feedback of forest disturbance on climate change might therefore be smaller in subarctic regions. |
---|---|
ISSN: | 1432-9840 1435-0629 |
DOI: | 10.1007/s10021-019-00394-6 |