Experimental evidence of structural evolution in ultrafine cobalt particles stabilized in different polymers—From a polytetrahedral arrangement to the hexagonal structure
Ultrafine cobalt particles have been reproducibly synthesized by decomposition of an organometallic precursor in the presence of a stabilizing polymer. The size of the stable monodisperse colloids thus obtained is seen to strongly depend on the nature of the polymer: around 4.2 nm diameter in polyph...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2000-05, Vol.112 (18), p.8137-8145 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrafine cobalt particles have been reproducibly synthesized by decomposition of an organometallic precursor in the presence of a stabilizing polymer. The size of the stable monodisperse colloids thus obtained is seen to strongly depend on the nature of the polymer: around 4.2 nm diameter in polyphenylenoxide (PPO) and around 1.4 nm diameter in polyvinylpyrrolidone (PVP). Investigations by wide angle x-ray scattering (WAXS) and high-resolution transmission electron microscopy (HRTEM) give evidence for a size dependence of the structural organization, and hence for a close relationship between structure and synthesis conditions. Co/PPO particles exhibit a hexagonal compact structure with the metal–metal bond length of the bulk material while Co/PVP ones display an original structure. We show that the unusual features of the experimental data in Co/PVP clearly point to a nonperiodic polytetrahedral structure. Successful simulations of the HRTEM and WAXS results have been obtained using models built on the basis of a polytetrahedral arrangement. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.481414 |