On para‐Kähler Lie algebroids and contravariant pseudo‐Hessian structures

In this paper, we generalize all the results obtained on para‐Kähler Lie algebras in [3] to para‐Kähler Lie algebroids. In particular, we study exact para‐Kähler Lie algebroids as a generalization of exact para‐Kähler Lie algebras. This study leads to a natural generalization of pseudo‐Hessian manif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2019-07, Vol.292 (7), p.1418-1443
Hauptverfasser: Benayadi, Saïd, Boucetta, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we generalize all the results obtained on para‐Kähler Lie algebras in [3] to para‐Kähler Lie algebroids. In particular, we study exact para‐Kähler Lie algebroids as a generalization of exact para‐Kähler Lie algebras. This study leads to a natural generalization of pseudo‐Hessian manifolds, we call them contravariant pseudo‐Hessian manifolds. Contravariant pseudo‐Hessian manifolds have many similarities with Poisson manifolds. We explore these similarities which, among others, leads to a powerful machinery to build examples of non trivial pseudo‐Hessian structures. Namely, we will show that given a finite dimensional commutative and associative algebra (A,.), the orbits of the action Φ of (A,+) on A∗ given by Φ(a,μ)=exp(La∗)(μ) are pseudo‐Hessian manifolds, where La(b)=a.b. We illustrate this result by considering many examples of associative commutative algebras and show that the resulting pseudo‐Hessian manifolds are very interesting.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201700137