Fresnel diffraction of multiple disks on axis: Application to coronagraphy
Aims. We seek to study the Fresnel diffraction of external occulters that differ from a single mask in a plane. Such occulters have been used in previous space missions and are planned for the future ESA Proba 3 ASPIICS coronagraph. Methods. We studied the shading efficiency of double on-axis disks...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2020-05, Vol.637, p.A16 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims.
We seek to study the Fresnel diffraction of external occulters that differ from a single mask in a plane. Such occulters have been used in previous space missions and are planned for the future ESA Proba 3 ASPIICS coronagraph.
Methods.
We studied the shading efficiency of double on-axis disks and generalized results to a 3D occulter. We used standard Fourier optics in an analytical approach. We show that the Fresnel diffraction of two and three disks on axis can be expressed using a Babinet-like approach. Results are obtained in the form of convolution integrals that can be written as Bessel-Hankel integrals; these are difficult to compute numerically for large Fresnel numbers found in solar coronagraphy.
Results.
We show that the shading efficiency of two disks is well characterized by the intensity of the residual Arago spot, a quantity that is easier to compute and therefore allows an interesting parametric study. Very simple conditions are derived for optimal sizes and positions of two disks to produce the darkest structure around the Arago spot. These conditions are inspired from empirical experiments performed in the sixties. A differential equation is established to give the optimal envelope for a multiple-disk occulter. The solution takes the form of a simple law, the approximation of which is a conical occulter, a shape already used in the SOHO Mission.
Conclusions.
In addition to quantifying expected results, the present study highlights unfortunate configurations of disks and spurious diffractions that may increase the stray light. Particular attention is paid to the possible issues of the future occulter spacecraft of ASPIICS. |
---|---|
ISSN: | 0004-6361 1432-0746 1432-0756 |
DOI: | 10.1051/0004-6361/201937208 |