Shifts in the dynamics of productivity signal ecosystem state transitions at the biome‐scale

Understanding ecosystem dynamics and predicting directional changes in ecosystem in response to global changes are ongoing challenges in ecology. Here we present a framework that links productivity dynamics and ecosystem state transitions based on a spatially continuous dataset of aboveground net pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2018-10, Vol.21 (10), p.1457-1466
Hauptverfasser: Hu, Zhongmin, Guo, Qun, Li, Shenggong, Piao, Shilong, Knapp, Alan K., Ciais, Philippe, Li, Xinrong, Yu, Guirui, Knops, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding ecosystem dynamics and predicting directional changes in ecosystem in response to global changes are ongoing challenges in ecology. Here we present a framework that links productivity dynamics and ecosystem state transitions based on a spatially continuous dataset of aboveground net primary productivity (ANPP) from the temperate grassland of China. Across a regional precipitation gradient, we quantified spatial patterns in ANPP dynamics (variability, asymmetry and sensitivity to rainfall) and related these to transitions from desert to semi‐arid to mesic steppe. We show that these three indices of ANPP dynamics displayed distinct spatial patterns, with peaks signalling transitions between grassland types. Thus, monitoring shifts in ANPP dynamics has the potential for predicting ecosystem state transitions in the future. Current ecosystem models fail to capture these dynamics, highlighting the need to incorporate more nuanced ecological controls of productivity in models to forecast future ecosystem shifts.
ISSN:1461-023X
1461-0248
DOI:10.1111/ele.13126