Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling

Modeling studies on the atmospheric diffusion and deposition of the radiocesium associated with the Fukushima Dai-ichi Nuclear Power Plant accident is reviewed here, with a focus on a research collaboration between l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN)­—the French institute in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GEOCHEMICAL JOURNAL 2018/03/30, Vol.52(2), pp.85-101
Hauptverfasser: Kajino, Mizuo, Sekiyama, Tsuyoshi Thomas, Mathieu, Anne, Korsakissok, Irène, Périllat, Raphaël, Quélo, Denis, Quérel, Arnaud, Saunier, Olivier, Adachi, Kouji, Girard, Sylvain, Maki, Takashi, Yumimoto, Keiya, Didier, Damien, Masson, Olivier, Igarashi, Yasuhito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modeling studies on the atmospheric diffusion and deposition of the radiocesium associated with the Fukushima Dai-ichi Nuclear Power Plant accident is reviewed here, with a focus on a research collaboration between l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN)­—the French institute in charge of evaluating the consequences of nuclear accidents and advising authorities in case of a crisis—and the Meteorological Research Institute (MRI) of the Japan Meteorological Agency—an operational weather forecasting center in Japan. While the modelers have come to know that wet deposition is one of the key processes, the size of its influence is unknown. They also know that the simulation results vary, but they do not know exactly why. Under the research collaboration, we aimed to understand the atmospheric processes, especially wet deposition, and to quantify the uncertainties of each component of our simulation using various numerical techniques, such as ensemble simulations, data assimilation, elemental process modeling, and inverse modeling. The outcomes of these collaborative research topics are presented in this paper. We also discuss the future directions of atmospheric modeling studies: data assimilation using the high temporal and spatial resolution surface concentration measurement data, and consideration of aerosol properties such as size and hygroscopicity into wet and dry deposition schemes.
ISSN:0016-7002
1880-5973
DOI:10.2343/geochemj.2.0503