Characterization of Breast Implant Surfaces, Shapes, and Biomechanics: A Comparison of High Cohesive Anatomically Shaped Textured Silicone, Breast Implants from Three Different Manufacturers
Several companies offer anatomically shaped breast implants but differences among manufacturers are often misunderstood. The shell texture is a crucial parameter for anatomically shaped implants to prevent rotation and to decrease the risk of capsular contracture, even though concerns have recently...
Gespeichert in:
Veröffentlicht in: | Aesthetic plastic surgery 2016-02, Vol.40 (1), p.89-97 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several companies offer anatomically shaped breast implants but differences among manufacturers are often misunderstood. The shell texture is a crucial parameter for anatomically shaped implants to prevent rotation and to decrease the risk of capsular contracture, even though concerns have recently been raised concerning the complications associated with textured breast implants. The aim of this study was to characterize differences in terms of texture, cell adhesion, shape, and stiffness between some commonly used anatomically shaped implants from three different manufacturers.
Methods
Five commercially available anatomically shaped breast implants from 3 different manufacturers (Allergan, Mentor, and Sebbin) were used. Scanning electron microscopy, X-ray microtomography, and scanning mechanical microscopy were used to characterize the shell texture. Human fibroblast adhesion onto the shells was evaluated. 3D models of the implants were obtained using CT-scan acquisitions to analyze their shape. Implant stiffness was evaluated using a tractiometer.
Results
Major differences were observed in the topography of the textures of the shells, but this was not conveyed by a statistically significant fibroblast adhesion difference. However, fibroblasts adhered better on anatomically shaped textured implants than on smooth implants (
p
|
---|---|
ISSN: | 0364-216X 1432-5241 |
DOI: | 10.1007/s00266-015-0603-8 |