First-Order Interpretations of Bounded Expansion Classes
The notion of bounded expansion captures uniform sparsity of graph classes and renders various algorithmic problems that are hard in general tractable. In particular, the model-checking problem for first-order logic is fixed-parameter tractable over such graph classes. With the aim of generalizing s...
Gespeichert in:
Veröffentlicht in: | ACM transactions on computational logic 2020-10, Vol.21 (4), p.1-41 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The notion of bounded expansion captures uniform sparsity of graph classes and renders various algorithmic problems that are hard in general tractable. In particular, the model-checking problem for first-order logic is fixed-parameter tractable over such graph classes. With the aim of generalizing such results to dense graphs, we introduce classes of graphs with
structurally bounded expansion
, defined as first-order transductions of classes of bounded expansion. As a first step towards their algorithmic treatment, we provide their characterization analogous to the characterization of classes of bounded expansion via low treedepth covers (or colorings), replacing treedepth by its dense analogue called shrubdepth. |
---|---|
ISSN: | 1529-3785 1557-945X |
DOI: | 10.1145/3382093 |