Hierarchical Structure of NiMo Hydrodesulfurization Catalysts Determined by Ptychographic X‐Ray Computed Tomography

Hydrodesulphurization, the removal of sulphur from crude oils, is an essential catalytic process in the petroleum industry safeguarding the production of clean hydrocarbons. Sulphur removal is critical for the functionality of downstream processes and vital to the elimination of environmental pollut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-09, Vol.59 (39), p.17266-17271
Hauptverfasser: Ihli, Johannes, Bloch, Leonid, Krumeich, Frank, Wakonig, Klaus, Holler, Mirko, Guizar‐Sicairos, Manuel, Weber, Thomas, Silva, Julio Cesar, Bokhoven, Jeroen Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrodesulphurization, the removal of sulphur from crude oils, is an essential catalytic process in the petroleum industry safeguarding the production of clean hydrocarbons. Sulphur removal is critical for the functionality of downstream processes and vital to the elimination of environmental pollutants. The effectiveness of such an endeavour is among other factors determined by the structural arrangement of the heterogeneous catalyst. Namely, the accessibility of the catalytically active molybdenum disulphide (MoS2) slabs located on the surfaces of a porous alumina carrier. Here, we examined a series of pristine sulfided Mo and NiMo hydrodesulphurization catalysts of increasing metal loading prepared on commercial alumina carriers using ptychographic X‐ray computed nanotomography. Structural analysis revealed a build consisting of two interwoven support matrix elements differing in nanoporosity. With increasing metal loading, approaching that of industrial catalysts, these matrix elements exhibit a progressively dissimilar MoS2 surface coverage as well as MoS2 cluster formation at the matrix element boundaries. This is suggestive of metal deposition limitations and/ or catalyst activation and following prohibitive of optimal catalytic utilization. These results will allow for diffusivity calculations, a better rationale of current generation catalyst performance as well as a better distribution of the active phase in next‐generation hydrodesulphurization catalysts. Ptychographic X‐ray computed tomography was used to investigate the structural make‐up of supported hydrodesulfurization catalysts. The results will allow for a better rationale of current generation catalyst performance as well as a better distribution of the active phase in next‐generation hydrodesulfurization catalysts.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202008030