A note on recurrence of the Vertex reinforced jump process and fractional moments localization

We give a simple proof for recurrence of vertex reinforced jump process on \(\mathbb{Z}^d\), under strong reinforcement. Moreover, we show how the previous result implies that linearly edge-reinforced random walk on \ \(\mathbb{Z}^d\) is {recurrent} for strong reinforcement. Finally, we prove that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2021-01, Vol.26 (none)
Hauptverfasser: Collevecchio, Andrea, Zeng, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a simple proof for recurrence of vertex reinforced jump process on \(\mathbb{Z}^d\), under strong reinforcement. Moreover, we show how the previous result implies that linearly edge-reinforced random walk on \ \(\mathbb{Z}^d\) is {recurrent} for strong reinforcement. Finally, we prove that the \(H^{(2|2)}\) model on \(\mathbb{Z}^d\) localizes at strong disorder. Even though these results are well-known, we propose a unified approach, {which also has the advantage to provide shorter proofs}, and relies on estimating fractional moments, introduced by Aizenman and Molchanov.
ISSN:1083-6489
1083-6489
DOI:10.1214/21-EJP609