Climate-driven risks to the climate mitigation potential of forests
Much recent attention has focused on the potential of trees and forests to mitigate ongoing climate change by acting as sinks for carbon. Anderegg et al. review the growing evidence that forests' climate mitigation potential is increasingly at risk from a range of adversities that limit forest...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-06, Vol.368 (6497) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Much recent attention has focused on the potential of trees and forests to mitigate ongoing climate change by acting as sinks for carbon. Anderegg
et al.
review the growing evidence that forests' climate mitigation potential is increasingly at risk from a range of adversities that limit forest growth and health. These include physical factors such as drought and fire and biotic factors, including the depredations of insect herbivores and fungal pathogens. Full assessment and quantification of these risks, which themselves are influenced by climate, is key to achieving science-based policy outcomes for effective land and forest management.
Science
, this issue p.
eaaz7005
Forests have considerable potential to help mitigate human-caused climate change and provide society with many cobenefits. However, climate-driven risks may fundamentally compromise forest carbon sinks in the 21st century. Here, we synthesize the current understanding of climate-driven risks to forest stability from fire, drought, biotic agents, and other disturbances. We review how efforts to use forests as natural climate solutions presently consider and could more fully embrace current scientific knowledge to account for these climate-driven risks. Recent advances in vegetation physiology, disturbance ecology, mechanistic vegetation modeling, large-scale ecological observation networks, and remote sensing are improving current estimates and forecasts of the risks to forest stability. A more holistic understanding and quantification of such risks will help policy-makers and other stakeholders effectively use forests as natural climate solutions. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aaz7005 |