Delaying Effect of Cementite on Recrystallization Kinetics of a Ti-Nb Microalloyed High-Formability Steel
Annealing of cold-rolled high-strength steels leads to various microstructural changes such as recrystallization, cementite precipitation, microalloying elements precipitation and austenite formation. These transformations are expected to interact with each other. Understanding how and where austeni...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2020-08, Vol.51 (8), p.4059-4073 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Annealing of cold-rolled high-strength steels leads to various microstructural changes such as recrystallization, cementite precipitation, microalloying elements precipitation and austenite formation. These transformations are expected to interact with each other. Understanding how and where austenite forms in a microstructure is of prime importance to avoid formation of banded microstructures, which are detrimental to good in-use properties. In this work, a mean-field model is used to simulate concomitant recrystallization, cementite precipitation, microalloying elements precipitation and austenite formation kinetics, as well as their interactions during 1 and 10 °C/s heating. Excellent agreement with experimental data is obtained only if cementite pinning effect on recrystallized grain boundaries is considered. It is shown that cementite exhibits a much stronger delaying effect on recrystallization kinetics than microalloying elements, leading to the formation of banded microstructures. Carbon nominal content of a steel appears to be the most important parameter to acknowledge to understand recrystallization kinetics. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-020-05859-1 |