JeLLyFysh-Version1.0 — a Python application for all-atom event-chain Monte Carlo
We present JeLLyFysh-Version1.0, an open-source Python application for event-chain Monte Carlo (ECMC), an event-driven irreversible Markov-chain Monte Carlo algorithm for classical N-body simulations in statistical mechanics, biophysics and electrochemistry. The application’s architecture mirrors th...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2020-08, Vol.253, p.107168, Article 107168 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present JeLLyFysh-Version1.0, an open-source Python application for event-chain Monte Carlo (ECMC), an event-driven irreversible Markov-chain Monte Carlo algorithm for classical N-body simulations in statistical mechanics, biophysics and electrochemistry. The application’s architecture mirrors the mathematical formulation of ECMC. Local potentials, long-range Coulomb interactions and multi-body bending potentials are covered, as well as bounding potentials and cell systems including the cell-veto algorithm. Configuration files illustrate a number of specific implementations for interacting atoms, dipoles, and water molecules.
Program title:JeLLyFysh-Version1.0
Program files doi:http://dx.doi.org/10.17632/srrjt9493d.1
Licensing provisions: GNU GPLv3
Programming language: Python 3
Nature of problem: Event-chain Monte Carlo (ECMC) simulations for classical N-body simulations in statistical mechanics, biophysics and electrochemistry.
Solution method: Event-driven irreversible Markov-chain Monte Carlo algorithm.
Additional comments: The application is complete with sample configuration files, docstrings, and unittests. The manuscript is accompanied by a frozen copy of JeLLyFysh-Version1.0 that is made publicly available on GitHub (repository https://github.com/jellyfysh/JeLLyFysh, commit hash d453d497256e7270e8babc8e04d20fb6d847dee4). |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2020.107168 |