Investigation and Composition Characterization of a “NiTi-like” Alloy Combining High Temperature Shape Memory and High Entropy
New high temperature shape memory alloys with five or more elements are under development and present attractive performances for several functional applications. These active metallic materials are called high entropy and high temperature shape memory alloys (HE-HT-SMAs). This work deals with the c...
Gespeichert in:
Veröffentlicht in: | Shape memory and superelasticity : advances in science and technology 2020-06, Vol.6 (2), p.273-283 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New high temperature shape memory alloys with five or more elements are under development and present attractive performances for several functional applications. These active metallic materials are called high entropy and high temperature shape memory alloys (HE-HT-SMAs). This work deals with the characterization of an alloy that combines high temperature shape memory effect and high entropy effect features, a NiCuTiHfZr alloy. The evolution of the phase transformation and the shape memory effect during thermal fatigue was compared with a ternary alloy NiTiZr. Ingots were prepared in a cold crucible and alloys were characterized after thermal cycling at 600 K without a protective gas atmosphere. Optical microscope, X-ray diffraction, and scanning electron microscopy observations showed the presence of martensite in this unpublished alloy at room temperature. The differential scanning calorimetry (DSC) tests showed that martensitic transformation takes place at high temperature. High temperature thermal cycling was performed during a three-point bending tests under constant load without a protective atmosphere. Thermomechanical results showed that high entropy effects increase the operating behavior at high temperature. Hence this new composition of NiCuTiHfZr alloy can be used as an actuator for aerospace and aeronautic application. |
---|---|
ISSN: | 2199-384X 2199-3858 |
DOI: | 10.1007/s40830-020-00290-2 |