Direct search based on probabilistic feasible descent for bound and linearly constrained problems
Direct search is a methodology for derivative-free optimization whose iterations are characterized by evaluating the objective function using a set of polling directions. In deterministic direct search applied to smooth objectives, these directions must somehow conform to the geometry of the feasibl...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2019-04, Vol.72 (3), p.525-559 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Direct search is a methodology for derivative-free optimization whose iterations are characterized by evaluating the objective function using a set of polling directions. In deterministic direct search applied to smooth objectives, these directions must somehow conform to the geometry of the feasible region, and typically consist of positive generators of approximate tangent cones (which then renders the corresponding methods globally convergent in the linearly constrained case). One knows however from the unconstrained case that randomly generating the polling directions leads to better complexity bounds as well as to gains in numerical efficiency, and it becomes then natural to consider random generation also in the presence of constraints. In this paper, we study a class of direct-search methods based on sufficient decrease for solving smooth linearly constrained problems where the polling directions are randomly generated (in approximate tangent cones). The random polling directions must satisfy probabilistic feasible descent, a concept which reduces to probabilistic descent in the absence of constraints. Such a property is instrumental in establishing almost-sure global convergence and worst-case complexity bounds with overwhelming probability. Numerical results show that the randomization of the polling directions can be beneficial over standard approaches with deterministic guarantees, as it is suggested by the respective worst-case complexity bounds. |
---|---|
ISSN: | 0926-6003 1573-2894 |
DOI: | 10.1007/s10589-019-00062-4 |