Lower bounds for geometric diameter problems

The diameter of a set P of n points in R-d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fournier , H. (Université de Versailles Saint Quentin-en-Yvelines, Versailles(France). Laboratoire PRiSM), Vigneron , Antoine (INRA (France). UR 0341 Unité de recherche Mathématiques et Informatique Appliquées)
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diameter of a set P of n points in R-d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Omega(n log n) time in the algebraic computation tree model. It shows that the O(n log n) time algorithm of Ramos for computing the diameter of a point set in R-3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft's problem of finding an incidence between points and lines in R-2 to the diameter problem for a point set in R-7.
ISSN:0302-9743
1611-3349
DOI:10.1007/11682462_44