Chemodynamics of newly identified giants with a globular cluster like abundance patterns in the bulge, disc, and halo of the Milky Way
The latest edition of the APOGEE-2/DR14 survey catalogue and the first Payne data release of APOGEE abundance determinations by Ting et al. are examined. We identify 31 previously unremarked metal-poor giant stars with anomalously high levels of [N/Fe] abundances, which is not usually observed among...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2019-09, Vol.488 (2), p.2864-2880 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The latest edition of the APOGEE-2/DR14 survey catalogue and the first Payne data release of APOGEE abundance determinations by Ting et al. are examined. We identify 31 previously unremarked metal-poor giant stars with anomalously high levels of [N/Fe] abundances, which is not usually observed among metal-poor stars in the Milky Way. We made use of the Brussels Automatic Stellar Parameter (BACCHUS) code to re-derive manually the chemical abundances of 31 field stars in order to compile the main element families, namely the light elements (C, N), a-elements (O, Mg, Si), iron-peak element (Fe), s-process elements (Ce, Nd), and the light odd-Z element (Na, Al). We have found all these objects have a [N/Fe] ≳ +0.5, and are thus identified here as nitrogen-rich stars. An orbital analysis of these objects revealed that a handful of them shares the orbital properties of the bar/bulge, and possibly linked to tidal debris of surviving globular clusters trapped into the bar component. Three of the 31 stars are actually halo interlopers into the bulge area, which suggests that halo contamination is not insignificant when studying N-rich stars found in the inner Galaxy, whereas the rest of the N-rich stars share orbital properties with the halo population. Most of the newly identified population exhibits chemistry similar to the so-called second-generation globular cluster stars (enriched in aluminum, [Al/Fe] ≳ +0.5), whereas a handful of them exhibit lower abundances of aluminum, [Al/Fe] < +0.5, which are thought to be chemically associated with the first generation of stars, as seen in globular clusters, or compatible with origin from a tidally disrupted dwarf galaxy. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stz1848 |