Anatomical identification of glomeruli in the antennal lobes of the male sphinx moth Manduca sexta

Computer-assisted neuroanatomical methods have been used to demonstrate unique identities of the glomeruli of the antennal lobes (ALs) in males of the sphinx moth Manduca sexta. The glomerular neuropil consists of the male-specific macroglomerular complex, which comprises two closely apposed bulky s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 1992-11, Vol.270 (2), p.205-227
Hauptverfasser: ROSPARS, J. P, HILDEBRAND, J. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computer-assisted neuroanatomical methods have been used to demonstrate unique identities of the glomeruli of the antennal lobes (ALs) in males of the sphinx moth Manduca sexta. The glomerular neuropil consists of the male-specific macroglomerular complex, which comprises two closely apposed bulky subunits, and 64 +/- 1 "ordinary" glomeruli arrayed in a shell around a central region of coarse neuropil. Computer-generated maps show the exact locations of all glomeruli and adjacent groups of neuronal somata in a constant Cartesian coordinate system, such that these can be accurately identified in any individual. The glomeruli belong to three classes according to the number and type of identification criteria they satisfy. The larger class comprises glomeruli (n = 44) identified only in the computer-generated maps on the basis of their relative positions. The other two classes include glomeruli that were also identified in sections, either directly from their proximity to readily identifiable structures and their shape and size (n = 10, including the labial-palp-pit-organ (LPO) glomerulus), or indirectly from their positions relative to the former (n = 9). Two very small glomeruli were present in only one AL, demonstrating the existence of anomalous glomeruli, whereas another glomerulus had no homologue in both ALs of one individual. The true number of ordinary glomeruli (per male AL) was thus estimated to be 64. The uncertainty in delineating some glomeruli might affect this number without implying modification of the homologies proposed. The locations of tracts and cell groups, both within and near the AL, are also invariant with respect to glomeruli, as shown in the computer maps. The methods employed are general and might be useful to researchers in related fields. The results obtained call for more attention to the precise geometry of neural structures.
ISSN:0302-766X
1432-0878
DOI:10.1007/bf00328007