Unbiased Stereological Estimation of d-Dimensional Volume in ℝn from an Isotropic Random Slice Through a Fixed Point
Unbiased stereological estimators of d -dimensional volume in ℝ n are derived, based on information from an isotropic random r -slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental le...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 1994-03, Vol.26 (1), p.1-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unbiased stereological estimators of
d
-dimensional volume in ℝ
n
are derived, based on information from an isotropic random
r
-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental lemma, an explicit formula for the probability that an isotropic random
r
-slice in ℝ
n
through
O
hits a fixed point in ℝ
n
is given. |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1017/S0001867800025969 |