Cold shock response and low temperature adaptation in psychrotrophic bacteria
Psychrotrophic bacteria are capable of developing over a wide temperature range and they can grow at temperatures close to or below freezing. This ability requires specific adaptative strategies in order to maintain membrane fluidity, the continuance of their metabolic activities, and protein synthe...
Gespeichert in:
Veröffentlicht in: | Journal of molecular microbiology and biotechnology 1999-11, Vol.1 (2), p.211-219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Psychrotrophic bacteria are capable of developing over a wide temperature range and they can grow at temperatures close to or below freezing. This ability requires specific adaptative strategies in order to maintain membrane fluidity, the continuance of their metabolic activities, and protein synthesis at low temperature. A cold-shock response has been described in several psychrotrophic bacteria, which is somewhat different from that in mesophilic microorganisms: (i) the synthesis of housekeeping proteins is not repressed following temperature downshift and they are similarly expressed at optimal and low temperatures (ii) cold-shock proteins or Csps are synthesized, the number of which increases with the severity of the shock (iii) a second group of cold-induced proteins, i.e. the cold acclimation proteins or Caps, comparable with Csps are continuously synthesized during prolonged growth at low temperature. Homologues to CspA, the major cold-shock protein in E. coli, have been described in various psychrotrophs, but unlike their mesophilic counterparts, they belong to the group of Caps. Although they have been poorly studied, Caps are of particular importance since they differentiate psychrotrophs from mesophiles, and they are probably one of the key determinant that allow life at very low temperature. |
---|---|
ISSN: | 1464-1801 1660-2412 |