Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos

Full-term development has now been achieved in several mammalian species by transfer of somatic nuclei into enucleated oocytes [1, 2]. Although a high proportion of such reconstructed embryos can evolve until the blastocyst stage, only a few percent develop into live offspring, which often exhibit d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2001-10, Vol.11 (19), p.1542-1546
Hauptverfasser: Bourc'his, D, Le Bourhis, D, Patin, D, Niveleau, A, Comizzoli, P, Renard, J.-P, Viegas-Péquignot, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Full-term development has now been achieved in several mammalian species by transfer of somatic nuclei into enucleated oocytes [1, 2]. Although a high proportion of such reconstructed embryos can evolve until the blastocyst stage, only a few percent develop into live offspring, which often exhibit developmental abnormalities [3, 4]. Regulatory epigenetic markers such as DNA methylation are imposed on embryonic cells as normal development proceeds, creating differentiated cell states. Cloned embryos require the erasure of their somatic epigenetic markers so as to regain a totipotent state [5]. Here we report on differences in the dynamics of chromosome methylation between cloned and normal bovine embryos before implantation. We show that cloned embryos fail to reproduce distinguishable parental-chromosome methylation patterns after fusion and maintain their somatic pattern during subsequent stages, mainly by a highly reduced efficiency of the passive demethylation process. Surprisingly, chromosomes appear constantly undermethylated on euchromatin in morulae and blastocysts, while centromeric heterochromatin remains more methylated than that of normal embryos. We propose that the abnormal time-dependent methylation events spanning the preimplantation development of clones may significantly interfere with the epigenetic reprogramming, contributing to the high incidence of physiological anomalies occurring later during pregnancy or after clone birth.
ISSN:0960-9822
1879-0445
DOI:10.1016/S0960-9822(01)00480-8