High Transcript Level of Fatty Acid-Binding Protein 11 but Not of Very Low-Density Lipoprotein Receptor Is Correlated to Ovarian Follicle Atresia in a Teleost Fish (Solea senegalensis)

Transcripts encoding a fatty acid-binding protein (FABP), Fabp11, and two isoforms of very low-density lipoprotein receptor (Vldlr; vitellogenin receptor) were characterized from the ovary of Senegalese sole (Solea senegalensis). Phylogenetic analyses of vertebrate FABPs demonstrated that Senegalese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2007-09, Vol.77 (3), p.504-516
Hauptverfasser: Agulleiro, Maria J, André, Michèle, Morais, Sofia, Cerdà, Joan, Babin, Patrick J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transcripts encoding a fatty acid-binding protein (FABP), Fabp11, and two isoforms of very low-density lipoprotein receptor (Vldlr; vitellogenin receptor) were characterized from the ovary of Senegalese sole (Solea senegalensis). Phylogenetic analyses of vertebrate FABPs demonstrated that Senegalese sole Fabp11, as zebrafish (Danio rerio) homologous sequences, is part of a newly defined teleost fish FABP subfamily that is a sister clade of tetrapod FABP4/FABP5/FABP8/FABP9. RT-PCR revealed high levels of vldlr transcript splicing variants in the ovaries and, to a lesser extent, in somatic tissues, whereas fabp11 was highly expressed in the ovaries, liver, and adipose tissue. In situ hybridization analysis showed vldlr and fabp11 mRNAs in previtellogenic oocytes, whereas no hybridization signals were detected in the larger vitellogenic oocytes. Transcript expression of fabp11 was strongly upregulated in somatic cells surrounding atretic follicles. Real-time quantitative RT-PCR demonstrated that ovarian transcript levels of vldlr and fabp11 had a significant positive correlation with the percentage of follicles in previtellogenesis and atresia, respectively. These results suggest that the expression level of vldlr transcripts may be used as a precocious functional marker to quantify the number of oocytes recruited for vitellogenesis and that fabp11 mRNA may be a very useful molecular marker for determining cellular events and environmental factors that regulate follicular atresia in fish.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.107.061598