Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass ( Dicentrarchus labrax) larvae
The main goal of this work was to determine the effect of dietary live yeast Debaryomyces hansenii on the enzymatic antioxidative status of sea bass Dicentrarchus labrax larvae. Growth, activity and expression of the main antioxidative enzymes: catalase (CAT), glutathione peroxidase (GPX) and supero...
Gespeichert in:
Veröffentlicht in: | Aquaculture 2010-02, Vol.300 (1), p.142-147 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main goal of this work was to determine the effect of dietary live yeast
Debaryomyces hansenii on the enzymatic antioxidative status of sea bass
Dicentrarchus labrax larvae. Growth, activity and expression of the main antioxidative enzymes: catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD), and heat shock protein (HSP70) were measured in sea bass larvae at 23 and 48
days after hatching. Larvae were fed on two microdiets: group one, fed microdiet containing live yeast and the control group fed microdiet without yeast. Heat shock protein 70 showed the same expression levels in both fish larvae fed yeast and the control diet. The group fed
D. hansenii showed highest growth and lower activity and expression levels of GPX and SOD compared to fish fed control diet. In our work the differences in activity and gene expression patterns could only be attributed to the presence of yeast, assuming a possible involvement of superoxide anion retention in fish larvae, which could represent importance to the host to increase cell or tissue responsiveness to growth- and/or differentiation-enhancing factors. |
---|---|
ISSN: | 0044-8486 1873-5622 |
DOI: | 10.1016/j.aquaculture.2009.12.015 |