Using Leaf Traits to Rank Native Grasses According to Their Nutritive Value

Leaf traits (leaf dry matter content [LDMC], specific leaf area [SLA] and leaf life span [LLS]) previously proposed to predict plant strategies for resource use, were studied to test if they can be used to rank grasses for digestible organic matter (DOM). On 14 native grass species from natural mead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rangeland ecology & management 2006-11, Vol.59 (6), p.648-654
Hauptverfasser: Al Haj Khaled, Raouda, Duru, Michel, Decruyenaere, Virginie, Jouany, Claire, Cruz, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leaf traits (leaf dry matter content [LDMC], specific leaf area [SLA] and leaf life span [LLS]) previously proposed to predict plant strategies for resource use, were studied to test if they can be used to rank grasses for digestible organic matter (DOM). On 14 native grass species from natural meadows in the French Pyrenees, leaf blade chemical components (fiber, cellulose, hemi-cellulose and lignin) and DOM were estimated for two growing periods using two different methods (chemical-enzymatic and Near Infrared Reflectance Spectroscopy). The ranking of species based on LDMC, SLA and LLS was conserved. Fiber content and DOM were significantly correlated even though the data were obtained in different years (2001 and 2002), on different organs (youngest adult blades in 2001 and all the green blades of tillers in 2002) and by different analytical methods. LDMC seems to be the most suitable trait to rank native grasses according to their nutritive value because it ranks species as well as leaf traits and it is the easiest to measure. We suggest using LDMC as an indicator to rank grassland communities for herbage nutritive values.
ISSN:1550-7424
1551-5028
1551-5028
DOI:10.2111/05-031R2.1