Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat
The cereal cyst nematode (CCN) Heterodera avenae, is a significant pathogen of wheat. The wild grass Aegilops variabilis Accession No.1 has been found to be resistant to pathotypes of CCN; at least two genes transferred to wheat, designated as CreX and CreY, are involved in the resistance response....
Gespeichert in:
Veröffentlicht in: | Molecular breeding 2007-08, Vol.20 (1), p.31-40 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cereal cyst nematode (CCN) Heterodera avenae, is a significant pathogen of wheat. The wild grass Aegilops variabilis Accession No.1 has been found to be resistant to pathotypes of CCN; at least two genes transferred to wheat, designated as CreX and CreY, are involved in the resistance response. The CreY gene may be the same as Rkn-mn1, which confers resistance to root knot nematode (RKN) Meloidogyne naasi. The objective of this work was to pyramid the two CCN resistance genes in a wheat background through marker-assisted selection. As a first step, molecular markers flanking CreX were identified. The completely linked RAPD marker of Rkn-mn1 (CreY), OpY16-₁₀₆₅, previously obtained, was converted into a SCAR. All these dominant markers were used to incorporate in the same genotype the two Ae. variabilis chromosome segments carrying the two genes for resistance. CCN bioassays with the Ha12 pathotype showed that the level of resistance of the pyramided line was significantly higher than that of CreX and CreY single introgression lines, but lower than that of Ae. variabilis. This study thus illustrates the utilization of molecular markers in breeding for host resistance. |
---|---|
ISSN: | 1380-3743 1572-9788 |
DOI: | 10.1007/s11032-006-9070-x |