Analysis of chemically synthesized oleoylethanolamide by gas–liquid chromatography
Oleoylethanolamide (OEA) is known to potentially have beneficial biological effects on weight management by controlling food intake and activating lipid catabolism. In biological fluids, OEA and other endogenously biosynthesized fatty acid ethanolamides are usually analyzed by liquid chromatography–...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2008-08, Vol.1202 (2), p.216-219 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oleoylethanolamide (OEA) is known to potentially have beneficial biological effects on weight management by controlling food intake and activating lipid catabolism. In biological fluids, OEA and other endogenously biosynthesized fatty acid ethanolamides are usually analyzed by liquid chromatography–mass spectrometry (LC–MS). The present study provides analytical method to routinely assess the quality of OEA prepared for biological studies by gas–liquid chromatography (GLC). The preparation of OEA for biomedical studies can be performed by
N-acylation of oleic acid/esters or using oleoyl chloride. In the present study, OEA was prepared by transamidation of triolein. The analysis of the synthesized OEA has been performed by gas–liquid chromatography of its trimethylsilyl ether (TMS) derivatives. Free OEA cannot be analyzed as such because dehydration of the ethanolamide moiety promptly happens in the GLC injection. This thermal degradation reaction gives rise to the formation of an oxazoline derivative. The TMS moiety prevents the reaction, and the structure of the formed derivative was assessed by mass spectrometry. We show here that OEA prepared for biological studies can be routinely analyzed by GLC after TMS derivative preparation. |
---|---|
ISSN: | 0021-9673 1873-3778 |
DOI: | 10.1016/j.chroma.2008.07.008 |