Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) – Implications for dietary recommendations

The accretion of docosahexaenoic acid (DHA) in membranes of the central nervous system is required for the optimum development of retina and brain functions. DHA status is determined by the dietary intake of n-3 polyunsaturated fatty acids (PUFA), both the metabolic precursor α-linolenic acid (α-LNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimie 2011, Vol.93 (1), p.7-12
Hauptverfasser: Guesnet, Philippe, Alessandri, Jean-Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accretion of docosahexaenoic acid (DHA) in membranes of the central nervous system is required for the optimum development of retina and brain functions. DHA status is determined by the dietary intake of n-3 polyunsaturated fatty acids (PUFA), both the metabolic precursor α-linolenic acid (α-LNA) and DHA. Clinical studies have shown that feeding term or premature infants with formula low in total n-3 PUFA may alter the maturation of visual acuity. Moreover, feeding infants over the first 6 mon of life with formula containing adequate α-LNA, but no DHA, did not sustain the same cerebral accretion of DHA as that of breast-fed infants. Whether lower DHA accretion in brain of formula-fed term infants impairs neurophysiological performances is not clearly established. Contradictory data have been published, possibly owing to confounding factors such as maternal intakes and/or genetic variations in PUFA metabolism. Nevertheless, a large corpus of data is in favor of the recommendation of regular dietary intakes of DHA (during at least the first 6 mon of life) and suggest that DHA should be added in formulas at the level generally found in human milk (0.2–0.3 wt% of total fatty acids). The maternal intake of n-3 PUFA during pregnancy and lactation is also crucial, since the n-3 PUFA are provided during perinatal development through placental transfer and maternal milk, which determines the DHA status of the newborn and consequently impacts on post-natal development of brain and visual functions. Whether more clinical studies are needed to control and improve the impact of DHA maternal intakes on the progeny’s neurodevelopment, several commissions recommended by precaution that DHA average intake for pregnant and lactating women should be of 200–300 mg/day.
ISSN:0300-9084
1638-6183
DOI:10.1016/j.biochi.2010.05.005