Pyrethroid resistance in the tomato red spider mite, Tetranychus evansi, is associated with mutation of the para-type sodium channel

BACKGROUND: The tomato red spider mite, Tetranychus evansi (Baker and Pritchard), is a serious pest of solanaceous crops in many African countries. In this study an investigation has been conducted to establish whether mutation of the para‐type sodium channel underlies pyrethroid resistance in T. ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2011-08, Vol.67 (8), p.891-897
Hauptverfasser: Nyoni, Benjamin N, Gorman, Kevin, Mzilahowa, Themba, Williamson, Martin S, Navajas, Maria, Field, Linda M, Bass, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: The tomato red spider mite, Tetranychus evansi (Baker and Pritchard), is a serious pest of solanaceous crops in many African countries. In this study an investigation has been conducted to establish whether mutation of the para‐type sodium channel underlies pyrethroid resistance in T. evansi strains collected in Southern Malawi. RESULTS: Two T. evansi strains from Malawi showed tolerance to the organophosphate chlorpyrifos and resistance (20–40‐fold) to the pyrethroid bifenthrin, but were susceptible to two contemporary acaricides (abamectin and fenpyroximate) in insecticide bioassays. Cloning of a 3.1 kb fragment (domains IIS5 to IVS5) of the T. evansi para gene from pyrethroid‐resistant and pyrethroid‐susceptible strains revealed a single non‐synonymous mutation in the resistant strains that results in an amino acid substitution (M918T) within the domain II region of the channel. Although novel to mites, this mutation confers high levels of resistance to pyrethroids in several insect species where it has always been associated with another mutation (L1014F). This is the first report of the M918T mutation in the absence of L1014F in any arthropod species. Diagnostic tools were developed that allow sensitive detection of this mutation in individual mites. CONCLUSION: This is the first study of pyrethroid resistance in T. evansi and provides contemporary information for resistance management of this pest in Southern Malawi. Copyright © 2011 Society of Chemical Industry
ISSN:1526-498X
1526-4998
1526-4998
DOI:10.1002/ps.2145