Anti-microbial effectiveness of relative humidity-controlled carvacrol release from wheat gluten/montmorillonite coated papers

Wheat gluten coated papers containing carvacrol (15wt%) as anti-microbial agent and montmorillonite (0-7wt%) as filler were investigated as anti-microbial controlled delivery systems. The carvacrol losses were followed during the coating process and storage time at 30∞C under controlled RH from 40 t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food control 2011-10, Vol.22 (10), p.1582-1591
Hauptverfasser: Mascheroni, E., Guillard, V., Gastaldi, E., Gontard, N., Chalier, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wheat gluten coated papers containing carvacrol (15wt%) as anti-microbial agent and montmorillonite (0-7wt%) as filler were investigated as anti-microbial controlled delivery systems. The carvacrol losses were followed during the coating process and storage time at 30∞C under controlled RH from 40 to 100% RH. Increasing MMT content limited carvacrol losses during the coating process. A mathematical model based on Fick’s second law was used to determine the apparent diffusivities of carvacrol from experimental data of kinetic release at 30∞C and controlled RH. Diffusivity values varied from 0.143 × 10−14 m2/s (0wt% MMT, 40% RH) to 6.010 × 10−14 m2/s (5wt% MMT, 100%RH) depending on both MMT% and RH. The carvacrol diffusivities increased with increasing RH, and the presence of a high amount of MMT (≥5wt%) accentuated the RH-induced effect. Specific aggregated structure was evidenced by SEM and TEM in the presence of carvacrol and 5wt% MMT creating a preferential pathway for carvacrol diffusion. The anti-microbial efficiency of the MMT-WG-coated papers toward Escherichia Coli was assessed and showed that the anti-microbial effect was related to the carvacrol diffusivity. The diffusivity coefficients were utilized to optimize the packaging characteristics required to develop an efficient anti-microbial system and were finally validated against Botrytis cinerea.
ISSN:0956-7135
1873-7129
DOI:10.1016/j.foodcont.2011.03.014