Occurrence and genetic diversity of phosphate-solubilizing bacteria in soils of differing chemical characteristics in Kenya

This study focused on the isolation, identification (sequencing of 16S rDNA gene) and determination of the phosphorus (P)-solubilizing efficiency of native populations of phosphate-solubilizing bacteria (PSB) in 13 Kenyan soils with differing chemical characteristics. Air-dried soil samples were ser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of microbiology 2012-09, Vol.62 (3), p.897-904
Hauptverfasser: Ndung’u-Magiroi, Keziah W, Herrmann, Laetitia, Okalebo, John Robert, Othieno, Caleb O, Pypers, Pieter, Lesueur, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focused on the isolation, identification (sequencing of 16S rDNA gene) and determination of the phosphorus (P)-solubilizing efficiency of native populations of phosphate-solubilizing bacteria (PSB) in 13 Kenyan soils with differing chemical characteristics. Air-dried soil samples were serially diluted and plated on NBRIP media and enumerated. Their phosphate-solubilizing efficiency was assessed on Frioni’s agar. Pearson correlation coefficients were determined between PSB populations and soil properties. The PSB populations varied among the sites tested and had a positive and significant correlation (p ≤ 0.05) with organic carbon (r = 0.76), exchangeable calcium (r = 0.93) and exchangeable magnesium (r = 0.92). A total of 150 isolates were identified to the genus and species level. Among the isolates, Bacillus megaterium, Bacillus sp. and Arthrobacter sp. were the most abundant and well-distributed strains. However, only 5% of the total isolates were efficient in terms of phosphate-solubilizing efficiency. The results indicate that although there were many PSB strains in the soils tested, only a few (5%) were effective in terms of their phosphate-solubilizing ability. It is therefore unlikely that native PSB contribute significantly to solubilizing phosphate in the soils tested, which would ultimately benefit plant growth. Therefore, inoculation with effective strains with a high P solubilization potential is necessary.
ISSN:1590-4261
1869-2044
DOI:10.1007/s13213-011-0326-2